回答編集履歴
1
コード例追加
answer
CHANGED
@@ -1,2 +1,131 @@
|
|
1
1
|
以前に私が回答したこの質問と全く同じなので、参考にしてください。
|
2
|
-
[【python】numpyとscipyで変数を含んだ行列式を計算したい](https://teratail.com/questions/275887#reply-393270)
|
2
|
+
[【python】numpyとscipyで変数を含んだ行列式を計算したい](https://teratail.com/questions/275887#reply-393270)
|
3
|
+
|
4
|
+
# 複素数でとく場合
|
5
|
+
ある複素数をZとすると、Z=0⇔|Z|=0なので、今回は|Z|を最小化するという問題になります。
|
6
|
+
``minimize``を使います。
|
7
|
+
|
8
|
+
```python
|
9
|
+
import cmath
|
10
|
+
import numpy as np
|
11
|
+
import scipy
|
12
|
+
from scipy.integrate import quad
|
13
|
+
import numpy.linalg as LA
|
14
|
+
from scipy import optimize
|
15
|
+
|
16
|
+
#積分1
|
17
|
+
def M(func, a, b, **kwargs):
|
18
|
+
def real_func(r):
|
19
|
+
return scipy.real(func(r))
|
20
|
+
def imag_func(r):
|
21
|
+
return scipy.imag(func(r))
|
22
|
+
real_integral = quad(real_func, a, b, **kwargs)
|
23
|
+
imag_integral = quad(imag_func, a, b, **kwargs)
|
24
|
+
return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
|
25
|
+
|
26
|
+
|
27
|
+
#複素積分計算1
|
28
|
+
def F_r2(func, a, b, **kwargs):
|
29
|
+
def real_func(r):
|
30
|
+
return scipy.real(func(r))
|
31
|
+
def imag_func(r):
|
32
|
+
return scipy.imag(func(r))
|
33
|
+
real_integral = quad(real_func, a, b, **kwargs)
|
34
|
+
imag_integral = quad(imag_func, a, b, **kwargs)
|
35
|
+
return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
|
36
|
+
|
37
|
+
|
38
|
+
#複素積分計算2
|
39
|
+
def F_r3(func, a, b, **kwargs):
|
40
|
+
def real_func(r):
|
41
|
+
return scipy.real(func(r))
|
42
|
+
def imag_func(r):
|
43
|
+
return scipy.imag(func(r))
|
44
|
+
real_integral = quad(real_func, a, b, **kwargs)
|
45
|
+
imag_integral = quad(imag_func, a, b, **kwargs)
|
46
|
+
return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
|
47
|
+
|
48
|
+
|
49
|
+
#複素積分計算3
|
50
|
+
def G_r2(func, a, b, **kwargs):
|
51
|
+
def real_func(r):
|
52
|
+
return scipy.real(func(r))
|
53
|
+
def imag_func(r):
|
54
|
+
return scipy.imag(func(r))
|
55
|
+
real_integral = quad(real_func, a, b, **kwargs)
|
56
|
+
imag_integral = quad(imag_func, a, b, **kwargs)
|
57
|
+
return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
|
58
|
+
|
59
|
+
|
60
|
+
#複素積分計算4
|
61
|
+
def G_r3(func, a, b, **kwargs):
|
62
|
+
def real_func(r):
|
63
|
+
return scipy.real(func(r))
|
64
|
+
def imag_func(r):
|
65
|
+
return scipy.imag(func(r))
|
66
|
+
real_integral = quad(real_func, a, b, **kwargs)
|
67
|
+
imag_integral = quad(imag_func, a, b, **kwargs)
|
68
|
+
return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
|
69
|
+
|
70
|
+
def A(x):
|
71
|
+
#数値は仮
|
72
|
+
r0 = 1
|
73
|
+
r1 = 1
|
74
|
+
r2 = 1
|
75
|
+
r3 = 1
|
76
|
+
vr2 = 1
|
77
|
+
beta2 = 1
|
78
|
+
n = 1
|
79
|
+
Q = 1
|
80
|
+
ganma = - Q / cmath.tan(beta2)
|
81
|
+
|
82
|
+
omega = x[0]+x[1]*1j
|
83
|
+
|
84
|
+
A_M = M(lambda r: r2 / (r * cmath.sin(beta2)), r2, r1)
|
85
|
+
A_F_r2 = F_r2(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r / r2)**(n + 1), r3, r2)
|
86
|
+
A_F_r3 = F_r3(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r / r3)**(n + 1), r3, r3)
|
87
|
+
A_G_r2 = G_r2(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r2 / r)**(n - 1), r2, r2)
|
88
|
+
A_G_r3 = G_r3(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r3 / r)**(n - 1), r3, r2)
|
89
|
+
|
90
|
+
#raund_theta算出
|
91
|
+
raund_theta = cmath.exp(-1j *(omega * cmath.pi * (r3**2 - r2**2) / Q - n * ganma * cmath.log(r3 / r2) / Q)) - ((n - 1) / r3 ) * 0.5 * A_G_r3[0]
|
92
|
+
#各種値計算
|
93
|
+
a11 = r2 * vr2
|
94
|
+
a12 = (1 - cmath.exp(-2* beta2 * 1j)) * ( 1j * r2 * omega / cmath.tan(beta2) - 0.5 * A_M[0] * n * omega )
|
95
|
+
a13 = r1**n * omega
|
96
|
+
a14 = omega / r1**n
|
97
|
+
a22 = 1 - cmath.exp(-2* 1j * beta2)
|
98
|
+
a23 = r1**(n -1)
|
99
|
+
a24 = 1 / r1**(n + 1)
|
100
|
+
a31 = (1j * omega - ganma /(2 * cmath.pi * r3**2) * 1j * n + Q/(2 * cmath.pi * r3**2)) * (0.5 * A_F_r3[0] - 0.5 * A_G_r3[0] - 1j * (r2 / r3)**(n + 1) * cmath.exp(-2 * 1j * beta2) * (-1j *((0.5 * A_F_r2[0]) + (0.5 * A_G_r2[0])))) + Q/(2 * cmath.pi * r3**2) * (raund_theta + 1j * (n + 1) * r2**(n + 1) / r3**(n + 2) * cmath.exp(-2 * 1j * beta2) * (-1j * ((0.5 * A_F_r2[0]) + (0.5 * A_G_r2[0]))))
|
101
|
+
a32 = (1j * omega - ganma /(2 * cmath.pi * r3**2) * 1j * n + Q/(2 * cmath.pi * r3**2)) * (-1j * (r3 / r2)**(n - 1) - 1j * (r2 / r3)**(n + 1) * cmath.exp(-2 * 1j * beta2)) + (Q/(2 * cmath.pi * r3)) * (-1j * (n - 1) * r3**(n - 2) / r2**(n - 1) + 1j * (n + 1) * r2**(n + 1) / r3**(n + 2) * cmath.exp(-2 * 1j * beta2))
|
102
|
+
a43 = omega * r0**(n - 1)
|
103
|
+
a44 = -omega / r0**(n + 1)
|
104
|
+
|
105
|
+
#行列計算
|
106
|
+
A = np.matrix([
|
107
|
+
[a11, a12, a13, a14],
|
108
|
+
[ 0, a22, a23, a24],
|
109
|
+
[a31, a32, 0, 0],
|
110
|
+
[ 0, 0, a43, a44]
|
111
|
+
])
|
112
|
+
return np.abs(LA.det(A))
|
113
|
+
|
114
|
+
optimize.minimize(A, [0,1], method='Nelder-Mead')
|
115
|
+
```
|
116
|
+
|
117
|
+
# 結果
|
118
|
+
どういう計算をしているかわからないので、計算結果があっているかどうかはわかりません。
|
119
|
+
結果としてはomega = -1e-5 - 1.67e-5iとなります。
|
120
|
+
```text
|
121
|
+
final_simplex: (array([[-1.00106837e-05, -1.67414895e-05],
|
122
|
+
[-1.63706702e-05, 4.94895503e-05],
|
123
|
+
[-5.72935526e-05, -4.18866985e-06]]), array([1.47572037e-05, 3.94333956e-05, 4.34533398e-05]))
|
124
|
+
fun: 1.475720371432839e-05
|
125
|
+
message: 'Optimization terminated successfully.'
|
126
|
+
nfev: 76
|
127
|
+
nit: 41
|
128
|
+
status: 0
|
129
|
+
success: True
|
130
|
+
x: array([-1.00106837e-05, -1.67414895e-05])
|
131
|
+
```
|