質問するログイン新規登録

回答編集履歴

1

コード例追加

2020/08/01 16:44

投稿

Penpen7
Penpen7

スコア698

answer CHANGED
@@ -1,2 +1,131 @@
1
1
  以前に私が回答したこの質問と全く同じなので、参考にしてください。
2
- [【python】numpyとscipyで変数を含んだ行列式を計算したい](https://teratail.com/questions/275887#reply-393270)
2
+ [【python】numpyとscipyで変数を含んだ行列式を計算したい](https://teratail.com/questions/275887#reply-393270)
3
+
4
+ # 複素数でとく場合
5
+ ある複素数をZとすると、Z=0⇔|Z|=0なので、今回は|Z|を最小化するという問題になります。
6
+ ``minimize``を使います。
7
+
8
+ ```python
9
+ import cmath
10
+ import numpy as np
11
+ import scipy
12
+ from scipy.integrate import quad
13
+ import numpy.linalg as LA
14
+ from scipy import optimize
15
+
16
+ #積分1
17
+ def M(func, a, b, **kwargs):
18
+ def real_func(r):
19
+ return scipy.real(func(r))
20
+ def imag_func(r):
21
+ return scipy.imag(func(r))
22
+ real_integral = quad(real_func, a, b, **kwargs)
23
+ imag_integral = quad(imag_func, a, b, **kwargs)
24
+ return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
25
+
26
+
27
+ #複素積分計算1
28
+ def F_r2(func, a, b, **kwargs):
29
+ def real_func(r):
30
+ return scipy.real(func(r))
31
+ def imag_func(r):
32
+ return scipy.imag(func(r))
33
+ real_integral = quad(real_func, a, b, **kwargs)
34
+ imag_integral = quad(imag_func, a, b, **kwargs)
35
+ return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
36
+
37
+
38
+ #複素積分計算2
39
+ def F_r3(func, a, b, **kwargs):
40
+ def real_func(r):
41
+ return scipy.real(func(r))
42
+ def imag_func(r):
43
+ return scipy.imag(func(r))
44
+ real_integral = quad(real_func, a, b, **kwargs)
45
+ imag_integral = quad(imag_func, a, b, **kwargs)
46
+ return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
47
+
48
+
49
+ #複素積分計算3
50
+ def G_r2(func, a, b, **kwargs):
51
+ def real_func(r):
52
+ return scipy.real(func(r))
53
+ def imag_func(r):
54
+ return scipy.imag(func(r))
55
+ real_integral = quad(real_func, a, b, **kwargs)
56
+ imag_integral = quad(imag_func, a, b, **kwargs)
57
+ return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
58
+
59
+
60
+ #複素積分計算4
61
+ def G_r3(func, a, b, **kwargs):
62
+ def real_func(r):
63
+ return scipy.real(func(r))
64
+ def imag_func(r):
65
+ return scipy.imag(func(r))
66
+ real_integral = quad(real_func, a, b, **kwargs)
67
+ imag_integral = quad(imag_func, a, b, **kwargs)
68
+ return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
69
+
70
+ def A(x):
71
+ #数値は仮
72
+ r0 = 1
73
+ r1 = 1
74
+ r2 = 1
75
+ r3 = 1
76
+ vr2 = 1
77
+ beta2 = 1
78
+ n = 1
79
+ Q = 1
80
+ ganma = - Q / cmath.tan(beta2)
81
+
82
+ omega = x[0]+x[1]*1j
83
+
84
+ A_M = M(lambda r: r2 / (r * cmath.sin(beta2)), r2, r1)
85
+ A_F_r2 = F_r2(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r / r2)**(n + 1), r3, r2)
86
+ A_F_r3 = F_r3(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r / r3)**(n + 1), r3, r3)
87
+ A_G_r2 = G_r2(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r2 / r)**(n - 1), r2, r2)
88
+ A_G_r3 = G_r3(lambda r: cmath.exp((-1j* (omega * cmath.pi * (r**2 - r2**2) / Q - n * ganma * cmath.log(r / r2) / Q ))) * (r3 / r)**(n - 1), r3, r2)
89
+
90
+ #raund_theta算出
91
+ raund_theta = cmath.exp(-1j *(omega * cmath.pi * (r3**2 - r2**2) / Q - n * ganma * cmath.log(r3 / r2) / Q)) - ((n - 1) / r3 ) * 0.5 * A_G_r3[0]
92
+ #各種値計算
93
+ a11 = r2 * vr2
94
+ a12 = (1 - cmath.exp(-2* beta2 * 1j)) * ( 1j * r2 * omega / cmath.tan(beta2) - 0.5 * A_M[0] * n * omega )
95
+ a13 = r1**n * omega
96
+ a14 = omega / r1**n
97
+ a22 = 1 - cmath.exp(-2* 1j * beta2)
98
+ a23 = r1**(n -1)
99
+ a24 = 1 / r1**(n + 1)
100
+ a31 = (1j * omega - ganma /(2 * cmath.pi * r3**2) * 1j * n + Q/(2 * cmath.pi * r3**2)) * (0.5 * A_F_r3[0] - 0.5 * A_G_r3[0] - 1j * (r2 / r3)**(n + 1) * cmath.exp(-2 * 1j * beta2) * (-1j *((0.5 * A_F_r2[0]) + (0.5 * A_G_r2[0])))) + Q/(2 * cmath.pi * r3**2) * (raund_theta + 1j * (n + 1) * r2**(n + 1) / r3**(n + 2) * cmath.exp(-2 * 1j * beta2) * (-1j * ((0.5 * A_F_r2[0]) + (0.5 * A_G_r2[0]))))
101
+ a32 = (1j * omega - ganma /(2 * cmath.pi * r3**2) * 1j * n + Q/(2 * cmath.pi * r3**2)) * (-1j * (r3 / r2)**(n - 1) - 1j * (r2 / r3)**(n + 1) * cmath.exp(-2 * 1j * beta2)) + (Q/(2 * cmath.pi * r3)) * (-1j * (n - 1) * r3**(n - 2) / r2**(n - 1) + 1j * (n + 1) * r2**(n + 1) / r3**(n + 2) * cmath.exp(-2 * 1j * beta2))
102
+ a43 = omega * r0**(n - 1)
103
+ a44 = -omega / r0**(n + 1)
104
+
105
+ #行列計算
106
+ A = np.matrix([
107
+ [a11, a12, a13, a14],
108
+ [ 0, a22, a23, a24],
109
+ [a31, a32, 0, 0],
110
+ [ 0, 0, a43, a44]
111
+ ])
112
+ return np.abs(LA.det(A))
113
+
114
+ optimize.minimize(A, [0,1], method='Nelder-Mead')
115
+ ```
116
+
117
+ # 結果
118
+ どういう計算をしているかわからないので、計算結果があっているかどうかはわかりません。
119
+ 結果としてはomega = -1e-5 - 1.67e-5iとなります。
120
+ ```text
121
+ final_simplex: (array([[-1.00106837e-05, -1.67414895e-05],
122
+ [-1.63706702e-05, 4.94895503e-05],
123
+ [-5.72935526e-05, -4.18866985e-06]]), array([1.47572037e-05, 3.94333956e-05, 4.34533398e-05]))
124
+ fun: 1.475720371432839e-05
125
+ message: 'Optimization terminated successfully.'
126
+ nfev: 76
127
+ nit: 41
128
+ status: 0
129
+ success: True
130
+ x: array([-1.00106837e-05, -1.67414895e-05])
131
+ ```