回答編集履歴

2

コード修正

2020/07/23 02:39

投稿

jeanbiego
jeanbiego

スコア3966

test CHANGED
@@ -1,3 +1,195 @@
1
- out_degreeは**ノードから出ていくエッジ**の数ということなので、無向グラフだからその属性が無いのではないでしょうか。
1
+ out_degreeは**ノードから出ていくエッジ**の数ということなので、無向グラフだからその属性が無いのではないでしょうか。in_degreeも同様ですね。
2
2
 
3
3
  [networkx.DiGraph.out_degree](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.DiGraph.out_degree.html)
4
+
5
+
6
+
7
+ あと、G.get_edge_dataが大文字になっていました。
8
+
9
+ 以上を修正したのが下記です。
10
+
11
+ ```python3
12
+
13
+ import networkx as nx
14
+
15
+ import csv
16
+
17
+ import pandas as pd
18
+
19
+
20
+
21
+ # csvファイルの読み込み
22
+
23
+ Data = open('test.csv', "r")
24
+
25
+ next(Data, None) # CSVデータの最初の行をスキップ
26
+
27
+ Graphtype = nx.Graph() # 無向グラフを定義
28
+
29
+
30
+
31
+ G = nx.parse_edgelist(Data, delimiter=',', create_using=Graphtype,
32
+
33
+ nodetype=int, data=(('weight', float),))
34
+
35
+
36
+
37
+ for x in G.nodes():
38
+
39
+ print ("Node:", x, "has total #degree:",G.degree(x))
40
+
41
+ for u,v in G.edges():
42
+
43
+ print ("Weight of Edge ("+str(u)+","+str(v)+")", G.get_edge_data(u,v))
44
+
45
+
46
+
47
+ nx.draw(G)
48
+
49
+ plt.show()
50
+
51
+ """
52
+
53
+ Node: 202 has total #degree: 1
54
+
55
+ Node: 237 has total #degree: 1
56
+
57
+ Node: 280 has total #degree: 1
58
+
59
+ Node: 281 has total #degree: 1
60
+
61
+ Node: 118 has total #degree: 2
62
+
63
+ Node: 38 has total #degree: 9
64
+
65
+ Node: 139 has total #degree: 9
66
+
67
+ Node: 158 has total #degree: 9
68
+
69
+ Node: 160 has total #degree: 11
70
+
71
+ Node: 236 has total #degree: 9
72
+
73
+ Node: 282 has total #degree: 11
74
+
75
+ Node: 283 has total #degree: 9
76
+
77
+ Node: 284 has total #degree: 9
78
+
79
+ Node: 285 has total #degree: 9
80
+
81
+ Node: 286 has total #degree: 9
82
+
83
+ Node: 6 has total #degree: 3
84
+
85
+ Node: 240 has total #degree: 3
86
+
87
+ Weight of Edge (202,237) {'weight': 1.0}
88
+
89
+ Weight of Edge (280,281) {'weight': 1.0}
90
+
91
+ Weight of Edge (118,118) {'weight': 1.0}
92
+
93
+ Weight of Edge (38,139) {'weight': 1.0}
94
+
95
+ Weight of Edge (38,158) {'weight': 1.0}
96
+
97
+ Weight of Edge (38,160) {'weight': 1.0}
98
+
99
+ Weight of Edge (38,236) {'weight': 2.0}
100
+
101
+ Weight of Edge (38,282) {'weight': 1.0}
102
+
103
+ Weight of Edge (38,283) {'weight': 1.0}
104
+
105
+ Weight of Edge (38,284) {'weight': 1.0}
106
+
107
+ Weight of Edge (38,285) {'weight': 1.0}
108
+
109
+ Weight of Edge (38,286) {'weight': 1.0}
110
+
111
+ Weight of Edge (139,158) {'weight': 1.0}
112
+
113
+ Weight of Edge (139,160) {'weight': 1.0}
114
+
115
+ Weight of Edge (139,236) {'weight': 1.0}
116
+
117
+ Weight of Edge (139,282) {'weight': 1.0}
118
+
119
+ Weight of Edge (139,283) {'weight': 1.0}
120
+
121
+ Weight of Edge (139,284) {'weight': 1.0}
122
+
123
+ Weight of Edge (139,285) {'weight': 1.0}
124
+
125
+ Weight of Edge (139,286) {'weight': 1.0}
126
+
127
+ Weight of Edge (158,160) {'weight': 1.0}
128
+
129
+ Weight of Edge (158,236) {'weight': 1.0}
130
+
131
+ Weight of Edge (158,282) {'weight': 1.0}
132
+
133
+ Weight of Edge (158,283) {'weight': 1.0}
134
+
135
+ Weight of Edge (158,284) {'weight': 1.0}
136
+
137
+ Weight of Edge (158,285) {'weight': 1.0}
138
+
139
+ Weight of Edge (158,286) {'weight': 1.0}
140
+
141
+ Weight of Edge (160,236) {'weight': 1.0}
142
+
143
+ Weight of Edge (160,282) {'weight': 2.0}
144
+
145
+ Weight of Edge (160,283) {'weight': 1.0}
146
+
147
+ Weight of Edge (160,284) {'weight': 1.0}
148
+
149
+ Weight of Edge (160,285) {'weight': 1.0}
150
+
151
+ Weight of Edge (160,286) {'weight': 1.0}
152
+
153
+ Weight of Edge (160,240) {'weight': 1.0}
154
+
155
+ Weight of Edge (160,6) {'weight': 1.0}
156
+
157
+ Weight of Edge (236,282) {'weight': 1.0}
158
+
159
+ Weight of Edge (236,283) {'weight': 1.0}
160
+
161
+ Weight of Edge (236,284) {'weight': 1.0}
162
+
163
+ Weight of Edge (236,285) {'weight': 1.0}
164
+
165
+ Weight of Edge (236,286) {'weight': 1.0}
166
+
167
+ Weight of Edge (282,283) {'weight': 1.0}
168
+
169
+ Weight of Edge (282,284) {'weight': 1.0}
170
+
171
+ Weight of Edge (282,285) {'weight': 1.0}
172
+
173
+ Weight of Edge (282,286) {'weight': 1.0}
174
+
175
+ Weight of Edge (282,6) {'weight': 1.0}
176
+
177
+ Weight of Edge (282,240) {'weight': 1.0}
178
+
179
+ Weight of Edge (283,284) {'weight': 1.0}
180
+
181
+ Weight of Edge (283,285) {'weight': 1.0}
182
+
183
+ Weight of Edge (283,286) {'weight': 1.0}
184
+
185
+ Weight of Edge (284,285) {'weight': 1.0}
186
+
187
+ Weight of Edge (284,286) {'weight': 1.0}
188
+
189
+ Weight of Edge (285,286) {'weight': 1.0}
190
+
191
+ Weight of Edge (6,240) {'weight': 2.0}
192
+
193
+ """
194
+
195
+ ```

1

修正

2020/07/23 02:39

投稿

jeanbiego
jeanbiego

スコア3966

test CHANGED
@@ -1,3 +1,3 @@
1
- out_degreeはノードから出ていくエッジの数ということなので、無向グラフにないのは当然
1
+ out_degreeは**ノードから出ていくエッジ**の数ということなので、無向グラフだからその属性が無いのないでしょうか。
2
2
 
3
3
  [networkx.DiGraph.out_degree](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.DiGraph.out_degree.html)