teratail header banner
teratail header banner
質問するログイン新規登録

回答編集履歴

2

コード修正

2020/07/23 02:39

投稿

jeanbiego
jeanbiego

スコア3966

answer CHANGED
@@ -1,2 +1,98 @@
1
- out_degreeは**ノードから出ていくエッジ**の数ということなので、無向グラフだからその属性が無いのではないでしょうか。
1
+ out_degreeは**ノードから出ていくエッジ**の数ということなので、無向グラフだからその属性が無いのではないでしょうか。in_degreeも同様ですね。
2
- [networkx.DiGraph.out_degree](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.DiGraph.out_degree.html)
2
+ [networkx.DiGraph.out_degree](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.DiGraph.out_degree.html)
3
+
4
+ あと、G.get_edge_dataが大文字になっていました。
5
+ 以上を修正したのが下記です。
6
+ ```python3
7
+ import networkx as nx
8
+ import csv
9
+ import pandas as pd
10
+
11
+ # csvファイルの読み込み
12
+ Data = open('test.csv', "r")
13
+ next(Data, None) # CSVデータの最初の行をスキップ
14
+ Graphtype = nx.Graph() # 無向グラフを定義
15
+
16
+ G = nx.parse_edgelist(Data, delimiter=',', create_using=Graphtype,
17
+ nodetype=int, data=(('weight', float),))
18
+
19
+ for x in G.nodes():
20
+ print ("Node:", x, "has total #degree:",G.degree(x))
21
+ for u,v in G.edges():
22
+ print ("Weight of Edge ("+str(u)+","+str(v)+")", G.get_edge_data(u,v))
23
+
24
+ nx.draw(G)
25
+ plt.show()
26
+ """
27
+ Node: 202 has total #degree: 1
28
+ Node: 237 has total #degree: 1
29
+ Node: 280 has total #degree: 1
30
+ Node: 281 has total #degree: 1
31
+ Node: 118 has total #degree: 2
32
+ Node: 38 has total #degree: 9
33
+ Node: 139 has total #degree: 9
34
+ Node: 158 has total #degree: 9
35
+ Node: 160 has total #degree: 11
36
+ Node: 236 has total #degree: 9
37
+ Node: 282 has total #degree: 11
38
+ Node: 283 has total #degree: 9
39
+ Node: 284 has total #degree: 9
40
+ Node: 285 has total #degree: 9
41
+ Node: 286 has total #degree: 9
42
+ Node: 6 has total #degree: 3
43
+ Node: 240 has total #degree: 3
44
+ Weight of Edge (202,237) {'weight': 1.0}
45
+ Weight of Edge (280,281) {'weight': 1.0}
46
+ Weight of Edge (118,118) {'weight': 1.0}
47
+ Weight of Edge (38,139) {'weight': 1.0}
48
+ Weight of Edge (38,158) {'weight': 1.0}
49
+ Weight of Edge (38,160) {'weight': 1.0}
50
+ Weight of Edge (38,236) {'weight': 2.0}
51
+ Weight of Edge (38,282) {'weight': 1.0}
52
+ Weight of Edge (38,283) {'weight': 1.0}
53
+ Weight of Edge (38,284) {'weight': 1.0}
54
+ Weight of Edge (38,285) {'weight': 1.0}
55
+ Weight of Edge (38,286) {'weight': 1.0}
56
+ Weight of Edge (139,158) {'weight': 1.0}
57
+ Weight of Edge (139,160) {'weight': 1.0}
58
+ Weight of Edge (139,236) {'weight': 1.0}
59
+ Weight of Edge (139,282) {'weight': 1.0}
60
+ Weight of Edge (139,283) {'weight': 1.0}
61
+ Weight of Edge (139,284) {'weight': 1.0}
62
+ Weight of Edge (139,285) {'weight': 1.0}
63
+ Weight of Edge (139,286) {'weight': 1.0}
64
+ Weight of Edge (158,160) {'weight': 1.0}
65
+ Weight of Edge (158,236) {'weight': 1.0}
66
+ Weight of Edge (158,282) {'weight': 1.0}
67
+ Weight of Edge (158,283) {'weight': 1.0}
68
+ Weight of Edge (158,284) {'weight': 1.0}
69
+ Weight of Edge (158,285) {'weight': 1.0}
70
+ Weight of Edge (158,286) {'weight': 1.0}
71
+ Weight of Edge (160,236) {'weight': 1.0}
72
+ Weight of Edge (160,282) {'weight': 2.0}
73
+ Weight of Edge (160,283) {'weight': 1.0}
74
+ Weight of Edge (160,284) {'weight': 1.0}
75
+ Weight of Edge (160,285) {'weight': 1.0}
76
+ Weight of Edge (160,286) {'weight': 1.0}
77
+ Weight of Edge (160,240) {'weight': 1.0}
78
+ Weight of Edge (160,6) {'weight': 1.0}
79
+ Weight of Edge (236,282) {'weight': 1.0}
80
+ Weight of Edge (236,283) {'weight': 1.0}
81
+ Weight of Edge (236,284) {'weight': 1.0}
82
+ Weight of Edge (236,285) {'weight': 1.0}
83
+ Weight of Edge (236,286) {'weight': 1.0}
84
+ Weight of Edge (282,283) {'weight': 1.0}
85
+ Weight of Edge (282,284) {'weight': 1.0}
86
+ Weight of Edge (282,285) {'weight': 1.0}
87
+ Weight of Edge (282,286) {'weight': 1.0}
88
+ Weight of Edge (282,6) {'weight': 1.0}
89
+ Weight of Edge (282,240) {'weight': 1.0}
90
+ Weight of Edge (283,284) {'weight': 1.0}
91
+ Weight of Edge (283,285) {'weight': 1.0}
92
+ Weight of Edge (283,286) {'weight': 1.0}
93
+ Weight of Edge (284,285) {'weight': 1.0}
94
+ Weight of Edge (284,286) {'weight': 1.0}
95
+ Weight of Edge (285,286) {'weight': 1.0}
96
+ Weight of Edge (6,240) {'weight': 2.0}
97
+ """
98
+ ```

1

修正

2020/07/23 02:39

投稿

jeanbiego
jeanbiego

スコア3966

answer CHANGED
@@ -1,2 +1,2 @@
1
- out_degreeはノードから出ていくエッジの数ということなので、無向グラフにないのは当然
1
+ out_degreeは**ノードから出ていくエッジ**の数ということなので、無向グラフだからその属性が無いのないでしょうか。
2
2
  [networkx.DiGraph.out_degree](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.DiGraph.out_degree.html)