回答編集履歴
2
少しシンプルに
answer
CHANGED
@@ -1,38 +1,31 @@
|
|
1
1
|
荒業ですが…
|
2
|
-

|
3
|
-
|
4
3
|
```Python3
|
5
4
|
import cv2
|
6
5
|
import numpy as np
|
7
|
-
from scipy import ndimage as ndi
|
8
|
-
from skimage.feature import peak_local_max
|
9
6
|
|
10
7
|
img = cv2.imread('temp.jpeg',0)
|
11
8
|
# img = 255-img
|
12
|
-
|
9
|
+
img_blur = cv2.medianBlur(img,11)
|
13
|
-
dist = ndi.distance_transform_edt(img)
|
14
|
-
dist = dist - np.min(dist)
|
15
|
-
dist[dist<0.1] = 0
|
16
|
-
dist = np.asarray(dist/np.max(dist)*255,np.uint8)
|
17
|
-
# cv2.imshow("dist",dist)
|
18
10
|
|
19
|
-
|
11
|
+
cv2.imshow('img_blur',img_blur)
|
20
|
-
img[dist<32] = 0
|
21
12
|
|
22
|
-
cv2.imshow('img (modified)',img)
|
23
|
-
|
24
13
|
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
|
25
14
|
|
26
|
-
circles = cv2.HoughCircles(
|
15
|
+
circles = cv2.HoughCircles(img_blur,cv2.HOUGH_GRADIENT,1,2,param1=10,param2=8,minRadius=20,maxRadius=40)
|
27
16
|
|
28
17
|
if circles is not None:
|
29
18
|
for i in circles[0,:]:
|
30
|
-
print(img[int(i[1]),int(i[0])])
|
19
|
+
# print(img[int(i[1]),int(i[0])])
|
31
|
-
if 0 <
|
20
|
+
if 0 < img_blur[int(i[1]),int(i[0])]:
|
32
21
|
# draw the outer circle
|
33
22
|
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
|
34
23
|
# draw the center of the circle
|
35
24
|
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
|
25
|
+
# else:
|
26
|
+
# cv2.circle(cimg,(i[0],i[1]),i[2],(0,64,0),1)
|
27
|
+
# cv2.circle(cimg,(i[0],i[1]),2,(0,0,64),1)
|
28
|
+
|
36
29
|
|
37
30
|
cv2.imshow('detected circles',cimg)
|
38
31
|
else:
|
@@ -43,6 +36,8 @@
|
|
43
36
|
|
44
37
|
```
|
45
38
|
|
39
|
+
以下、初回投稿部分
|
40
|
+
---
|
46
41
|
|
47
42
|
> 最終面積が一番大きいところを取得する予定
|
48
43
|
> 画像は目を二値化したもので、黒目の部分だけ抽出したいです。
|
1
「むしゃくしゃしてやった、後悔はしていない。」
answer
CHANGED
@@ -1,3 +1,49 @@
|
|
1
|
+
荒業ですが…
|
2
|
+

|
3
|
+
|
4
|
+
```Python3
|
5
|
+
import cv2
|
6
|
+
import numpy as np
|
7
|
+
from scipy import ndimage as ndi
|
8
|
+
from skimage.feature import peak_local_max
|
9
|
+
|
10
|
+
img = cv2.imread('temp.jpeg',0)
|
11
|
+
# img = 255-img
|
12
|
+
img = cv2.medianBlur(img,11)
|
13
|
+
dist = ndi.distance_transform_edt(img)
|
14
|
+
dist = dist - np.min(dist)
|
15
|
+
dist[dist<0.1] = 0
|
16
|
+
dist = np.asarray(dist/np.max(dist)*255,np.uint8)
|
17
|
+
# cv2.imshow("dist",dist)
|
18
|
+
|
19
|
+
# cv2.imshow('img (blur)',img)
|
20
|
+
img[dist<32] = 0
|
21
|
+
|
22
|
+
cv2.imshow('img (modified)',img)
|
23
|
+
|
24
|
+
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
|
25
|
+
|
26
|
+
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,1,param1=10,param2=10,minRadius=10,maxRadius=40)
|
27
|
+
|
28
|
+
if circles is not None:
|
29
|
+
for i in circles[0,:]:
|
30
|
+
print(img[int(i[1]),int(i[0])])
|
31
|
+
if 0 < img[int(i[1]),int(i[0])]:
|
32
|
+
# draw the outer circle
|
33
|
+
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
|
34
|
+
# draw the center of the circle
|
35
|
+
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
|
36
|
+
|
37
|
+
cv2.imshow('detected circles',cimg)
|
38
|
+
else:
|
39
|
+
print("No circles detected.")
|
40
|
+
|
41
|
+
cv2.waitKey(0)
|
42
|
+
cv2.destroyAllWindows()
|
43
|
+
|
44
|
+
```
|
45
|
+
|
46
|
+
|
1
47
|
> 最終面積が一番大きいところを取得する予定
|
2
48
|
> 画像は目を二値化したもので、黒目の部分だけ抽出したいです。
|
3
49
|
|