回答編集履歴
1
パフォーマンス意識
    
        answer	
    CHANGED
    
    | @@ -3,7 +3,7 @@ | |
| 3 3 | 
             
            import pandas as pd
         | 
| 4 4 |  | 
| 5 5 | 
             
            df = pd.DataFrame({'A':range(10), 'B':range(10), 'C':range(10)})
         | 
| 6 | 
            -
            np.random.shuffle(df.loc[:, 'A'])
         | 
| 6 | 
            +
            np.random.shuffle(df.loc[:, 'A'].to_numpy())
         | 
| 7 7 |  | 
| 8 8 | 
             
            print(df)
         | 
| 9 9 | 
             
            #    A  B  C
         | 
| @@ -17,4 +17,12 @@ | |
| 17 17 | 
             
            # 7  4  7  7
         | 
| 18 18 | 
             
            # 8  1  8  8
         | 
| 19 19 | 
             
            # 9  9  9  9
         | 
| 20 | 
            +
            ```
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            ```Python
         | 
| 23 | 
            +
            >>> %timeit df.iloc[:,0] = df.iloc[:,0].sample(frac=1).reset_index(drop=True)
         | 
| 24 | 
            +
            412 µs ± 1.72 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            >>> %timeit np.random.shuffle(df.loc[:, 'A'].to_numpy())
         | 
| 27 | 
            +
            40.3 µs ± 117 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
         | 
| 20 28 | 
             
            ```
         | 
