回答編集履歴

1

パフォーマンス意識

2019/12/19 09:47

投稿

kirara0048
kirara0048

スコア1399

test CHANGED
@@ -8,7 +8,7 @@
8
8
 
9
9
  df = pd.DataFrame({'A':range(10), 'B':range(10), 'C':range(10)})
10
10
 
11
- np.random.shuffle(df.loc[:, 'A'])
11
+ np.random.shuffle(df.loc[:, 'A'].to_numpy())
12
12
 
13
13
 
14
14
 
@@ -37,3 +37,19 @@
37
37
  # 9 9 9 9
38
38
 
39
39
  ```
40
+
41
+
42
+
43
+ ```Python
44
+
45
+ >>> %timeit df.iloc[:,0] = df.iloc[:,0].sample(frac=1).reset_index(drop=True)
46
+
47
+ 412 µs ± 1.72 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
48
+
49
+
50
+
51
+ >>> %timeit np.random.shuffle(df.loc[:, 'A'].to_numpy())
52
+
53
+ 40.3 µs ± 117 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
54
+
55
+ ```