回答編集履歴
3
d
answer
CHANGED
@@ -43,8 +43,8 @@
|
|
43
43
|
# モデルを読み込む。
|
44
44
|
loaded_model = pickle.load(open(filename, "rb"))
|
45
45
|
|
46
|
-
|
46
|
+
acc_after_load = loaded_model.score(X, y) # 読み込み後にスコア計算
|
47
47
|
|
48
48
|
# 一致するかどうか
|
49
|
-
print(np.isclose(acc_before_save,
|
49
|
+
print(np.isclose(acc_before_save, acc_after_load)) # True
|
50
50
|
```
|
2
d
answer
CHANGED
@@ -8,4 +8,43 @@
|
|
8
8
|
|
9
9
|
> best_estimator_: Estimator that was chosen by the search
|
10
10
|
|
11
|
-
[sklearn.model_selection.GridSearchCV — scikit-learn 0.21.3 documentation](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html)
|
11
|
+
[sklearn.model_selection.GridSearchCV — scikit-learn 0.21.3 documentation](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html)
|
12
|
+
|
13
|
+
## 追記
|
14
|
+
|
15
|
+
```python
|
16
|
+
import pickle
|
17
|
+
|
18
|
+
from sklearn import metrics
|
19
|
+
from sklearn.datasets import make_blobs
|
20
|
+
from sklearn.model_selection import GridSearchCV
|
21
|
+
from sklearn.svm import SVC
|
22
|
+
|
23
|
+
# データセットを作成する。
|
24
|
+
X, y = make_blobs(n_samples=1000, centers=2, random_state=0)
|
25
|
+
|
26
|
+
# グリッドサーチを行う。
|
27
|
+
param_grid = {
|
28
|
+
"C": [0.1, 1, 10, 100, 1000],
|
29
|
+
"gamma": [1, 0.1, 0.01, 0.001, 0.0001],
|
30
|
+
"kernel": ["rbf"],
|
31
|
+
}
|
32
|
+
|
33
|
+
clf = GridSearchCV(SVC(), param_grid, refit=True, verbose=0, cv=3)
|
34
|
+
clf.fit(X, y)
|
35
|
+
|
36
|
+
filename = "ERP(SVM).sav"
|
37
|
+
|
38
|
+
acc_before_save = clf.score(X, y) # 保存前にスコア計算
|
39
|
+
|
40
|
+
# モデルを保存する。
|
41
|
+
pickle.dump(clf.best_estimator_, open(filename, "wb"))
|
42
|
+
|
43
|
+
# モデルを読み込む。
|
44
|
+
loaded_model = pickle.load(open(filename, "rb"))
|
45
|
+
|
46
|
+
acc_after_save = loaded_model.score(X, y) # 読み込み後にスコア計算
|
47
|
+
|
48
|
+
# 一致するかどうか
|
49
|
+
print(np.isclose(acc_before_save, acc_after_save)) # True
|
50
|
+
```
|
1
d
answer
CHANGED
File without changes
|