回答編集履歴
5
全面改訂(何度もすみません)
test
CHANGED
@@ -1,150 +1,16 @@
|
|
1
|
-
|
1
|
+
内容を全面改訂しました。
|
2
|
-
|
3
|
-
https://github.com/statsmodels/statsmodels/blob/bc5680db6265d275d89505815a5cec9e9f632239/statsmodels/sandbox/stats/multicomp.py#L1239
|
4
|
-
|
5
|
-
だと思うのでこれ読み解かないといけないと思います。
|
6
2
|
|
7
3
|
|
8
4
|
|
9
|
-
|
5
|
+
`print(pairwise_tukeyhsd(data_arr,ind_arr))`
|
6
|
+
|
7
|
+
を実行するとpairwise_tukeyhsd(data_arr,ind_arr)はTukeyHSDResultsインスタンスを返してきますがメソッド`__str__()`で文字列に変換されてしまいます。
|
10
8
|
|
11
9
|
|
12
10
|
|
13
|
-
|
11
|
+
一旦、変数で受けて、`vars()`で表示すればよいです。
|
14
12
|
|
15
13
|
```Python
|
16
|
-
|
17
|
-
from statsmodels.stats.multicomp import pairwise_tukeyhsd
|
18
|
-
|
19
|
-
import numpy as np
|
20
|
-
|
21
|
-
from statsmodels.sandbox.stats.multicomp import ( # noqa:F401
|
22
|
-
|
23
|
-
tukeyhsd, MultiComparison, GroupsStats, TukeyHSDResults, get_tukey_pvalue, varcorrection_pairs_unbalanced, get_tukeyQcrit2)
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
import copy
|
28
|
-
|
29
|
-
import math
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
import numpy as np
|
34
|
-
|
35
|
-
from numpy.testing import assert_almost_equal, assert_equal
|
36
|
-
|
37
|
-
from scipy import stats, interpolate
|
38
|
-
|
39
|
-
from statsmodels.compat.python import lzip, lrange
|
40
|
-
|
41
|
-
from statsmodels.iolib.table import SimpleTable
|
42
|
-
|
43
|
-
#temporary circular import
|
44
|
-
|
45
|
-
from statsmodels.stats.multitest import multipletests, _ecdf as ecdf, fdrcorrection as fdrcorrection0, fdrcorrection_twostage
|
46
|
-
|
47
|
-
from statsmodels.graphics import utils
|
48
|
-
|
49
|
-
from statsmodels.tools.sm_exceptions import ValueWarning
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
class MultiComparison2(MultiComparison):
|
54
|
-
|
55
|
-
def __init__(self, data, groups, group_order=None):
|
56
|
-
|
57
|
-
super().__init__(data, groups, group_order)
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
def tukeyhsd2(self, alpha=0.05):
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
self.groupstats = GroupsStats(
|
66
|
-
|
67
|
-
np.column_stack([self.data, self.groupintlab]),
|
68
|
-
|
69
|
-
useranks=False)
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
gmeans = self.groupstats.groupmean
|
74
|
-
|
75
|
-
gnobs = self.groupstats.groupnobs
|
76
|
-
|
77
|
-
# var_ = self.groupstats.groupvarwithin()
|
78
|
-
|
79
|
-
# #possibly an error in varcorrection in this case
|
80
|
-
|
81
|
-
var_ = np.var(self.groupstats.groupdemean(), ddof=len(gmeans))
|
82
|
-
|
83
|
-
# res contains: 0:(idx1, idx2), 1:reject, 2:meandiffs, 3: std_pairs,
|
84
|
-
|
85
|
-
# 4:confint, 5:q_crit, 6:df_total, 7:reject2, 8: pvals
|
86
|
-
|
87
|
-
res = tukeyhsd(gmeans, gnobs, var_, df=None, alpha=alpha, q_crit=None)
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
resarr = np.array(lzip(self.groupsunique[res[0][0]],
|
92
|
-
|
93
|
-
self.groupsunique[res[0][1]],
|
94
|
-
|
95
|
-
np.round(res[2], 4),
|
96
|
-
|
97
|
-
np.round(res[8], 4),
|
98
|
-
|
99
|
-
np.round(res[4][:, 0], 4),
|
100
|
-
|
101
|
-
np.round(res[4][:, 1], 4),
|
102
|
-
|
103
|
-
res[1]),
|
104
|
-
|
105
|
-
dtype=[('group1', object),
|
106
|
-
|
107
|
-
('group2', object),
|
108
|
-
|
109
|
-
('meandiff', float),
|
110
|
-
|
111
|
-
('p-adj', float),
|
112
|
-
|
113
|
-
('lower', float),
|
114
|
-
|
115
|
-
('upper', float),
|
116
|
-
|
117
|
-
('reject', np.bool8)])
|
118
|
-
|
119
|
-
results_table = SimpleTable(resarr, headers=resarr.dtype.names)
|
120
|
-
|
121
|
-
results_table.title = 'Multiple Comparison of Means - Tukey HSD, ' + \
|
122
|
-
|
123
|
-
'FWER=%4.2f' % alpha
|
124
|
-
|
125
|
-
print(res)
|
126
|
-
|
127
|
-
print("pvals is ", res[8])
|
128
|
-
|
129
|
-
print("reject is ", res[1])
|
130
|
-
|
131
|
-
print("std_pairs is ", res[3])
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
st_range = np.abs(res[2]) / res[3]
|
136
|
-
|
137
|
-
print("st_range is ", st_range)
|
138
|
-
|
139
|
-
print("q_crit is ", res[5])
|
140
|
-
|
141
|
-
print("st_range > q_crit is ", st_range > res[5])
|
142
|
-
|
143
|
-
return TukeyHSDResults(self, results_table, res[5], res[1], res[2],
|
144
|
-
|
145
|
-
res[3], res[4], res[6], res[7], var_, res[8])
|
146
|
-
|
147
|
-
|
148
14
|
|
149
15
|
def tukey_hsd( lst, ind, n ):
|
150
16
|
|
@@ -152,7 +18,9 @@
|
|
152
18
|
|
153
19
|
ind_arr = np.repeat(ind, n)
|
154
20
|
|
155
|
-
|
21
|
+
res = pairwise_tukeyhsd(data_arr, ind_arr)
|
22
|
+
|
23
|
+
print(vars(res))
|
156
24
|
|
157
25
|
|
158
26
|
|
@@ -176,9 +44,9 @@
|
|
176
44
|
|
177
45
|
```result
|
178
46
|
|
179
|
-
|
47
|
+
{'_multicomp': <statsmodels.sandbox.stats.multicomp.MultiComparison object at 0x0000015F51131C88>, '_results_table': <class 'statsmodels.iolib.table.SimpleTable'>, 'q_crit': 4.046412438282385, 'reject': array([False, True, True, False, False, False]), 'meandiffs': array([-5.2, -5.6, -8.4, -0.4, -3.2, -2.8]), 'std_pairs': array([1.31339255, 1.31339255, 1.31339255, 1.31339255, 1.31339255,
|
180
48
|
|
181
|
-
1.31339255]), array([[-10.51452797, 0.11452797],
|
49
|
+
1.31339255]), 'confint': array([[-10.51452797, 0.11452797],
|
182
50
|
|
183
51
|
[-10.91452797, -0.28547203],
|
184
52
|
|
@@ -188,56 +56,16 @@
|
|
188
56
|
|
189
57
|
[ -8.51452797, 2.11452797],
|
190
58
|
|
191
|
-
[ -8.11452797, 2.51452797]]),
|
59
|
+
[ -8.11452797, 2.51452797]]), 'df_total': 16, 'reject2': array([False, True, True, False, False, False]), 'variance': 8.625000000000002, 'pvalues': array([0.0562591 , 0.03714849, 0.00177409, 0.9 , 0.34502168,
|
192
60
|
|
193
|
-
0.45735327])
|
61
|
+
0.45735327]), 'data': array([15, 9, 18, 14, 18, 13, 8, 8, 12, 7, 10, 6, 11, 7, 12, 10, 7,
|
194
62
|
|
195
|
-
|
63
|
+
3, 5, 7]), 'groups': array(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C',
|
196
64
|
|
197
|
-
reject is [False True True False False False]
|
198
|
-
|
199
|
-
std_pairs is [1.31339255 1.31339255 1.31339255 1.31339255 1.31339255 1.31339255]
|
200
|
-
|
201
|
-
|
65
|
+
'C', 'C', 'D', 'D', 'D', 'D', 'D'], dtype='<U1'), 'groupsunique': array(['A', 'B', 'C', 'D'], dtype='<U1')}
|
202
|
-
|
203
|
-
q_crit is 4.046412438282385
|
204
|
-
|
205
|
-
st_range > q_crit is [False True True False False False]
|
206
|
-
|
207
|
-
Multiple Comparison of Means - Tukey HSD, FWER=0.05
|
208
|
-
|
209
|
-
=====================================================
|
210
|
-
|
211
|
-
group1 group2 meandiff p-adj lower upper reject
|
212
|
-
|
213
|
-
-----------------------------------------------------
|
214
|
-
|
215
|
-
A B -5.2 0.0563 -10.5145 0.1145 False
|
216
|
-
|
217
|
-
A C -5.6 0.0371 -10.9145 -0.2855 True
|
218
|
-
|
219
|
-
A D -8.4 0.0018 -13.7145 -3.0855 True
|
220
|
-
|
221
|
-
B C -0.4 0.9 -5.7145 4.9145 False
|
222
|
-
|
223
|
-
B D -3.2 0.345 -8.5145 2.1145 False
|
224
|
-
|
225
|
-
C D -2.8 0.4574 -8.1145 2.5145 False
|
226
|
-
|
227
|
-
-----------------------------------------------------
|
228
66
|
|
229
67
|
```
|
230
68
|
|
69
|
+
`'pvalues': array([0.0562591 , 0.03714849, 0.00177409, 0.9 , 0.34502168,
|
231
70
|
|
232
|
-
|
233
|
-
> Attributesに(pvaluesadjusted p-values from the HSD test)と書かれているので、
|
234
|
-
|
235
|
-
> そのTukeyHSDResultsインスタンスのAttributesの中身を見る方法があればこの問題は解決すると思うのですが。
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
TukeyHSDResults()の引数`pvalues`に渡しているのが`res[8]`でその値が
|
240
|
-
|
241
|
-
`pvals is [0.0562591 0.03714849 0.00177409 0.9 0.34502168 0.45735327]`
|
242
|
-
|
243
|
-
|
71
|
+
0.45735327])`が所望のデータだと思います。
|
4
いろいろ誤り修正
test
CHANGED
@@ -8,8 +8,6 @@
|
|
8
8
|
|
9
9
|
---
|
10
10
|
|
11
|
-
求め方じゃなくて値を確認したいんですかね。
|
12
|
-
|
13
11
|
|
14
12
|
|
15
13
|
コピペ&可変で算出に関連するパラメタをデバッグ出力する版
|
@@ -22,7 +20,7 @@
|
|
22
20
|
|
23
21
|
from statsmodels.sandbox.stats.multicomp import ( # noqa:F401
|
24
22
|
|
25
|
-
tukeyhsd, MultiComparison, GroupsStats, TukeyHSDResults, get_tukey_pvalue)
|
23
|
+
tukeyhsd, MultiComparison, GroupsStats, TukeyHSDResults, get_tukey_pvalue, varcorrection_pairs_unbalanced, get_tukeyQcrit2)
|
26
24
|
|
27
25
|
|
28
26
|
|
@@ -126,7 +124,15 @@
|
|
126
124
|
|
127
125
|
print(res)
|
128
126
|
|
127
|
+
print("pvals is ", res[8])
|
128
|
+
|
129
|
+
print("reject is ", res[1])
|
130
|
+
|
131
|
+
print("std_pairs is ", res[3])
|
132
|
+
|
133
|
+
|
134
|
+
|
129
|
-
st_range = np.abs(res[2])
|
135
|
+
st_range = np.abs(res[2]) / res[3]
|
130
136
|
|
131
137
|
print("st_range is ", st_range)
|
132
138
|
|
@@ -134,16 +140,12 @@
|
|
134
140
|
|
135
141
|
print("st_range > q_crit is ", st_range > res[5])
|
136
142
|
|
137
|
-
print("reject is ", res[1])
|
138
|
-
|
139
143
|
return TukeyHSDResults(self, results_table, res[5], res[1], res[2],
|
140
144
|
|
141
145
|
res[3], res[4], res[6], res[7], var_, res[8])
|
142
146
|
|
143
147
|
|
144
148
|
|
145
|
-
|
146
|
-
|
147
149
|
def tukey_hsd( lst, ind, n ):
|
148
150
|
|
149
151
|
data_arr = np.hstack( lst )
|
@@ -170,8 +172,6 @@
|
|
170
172
|
|
171
173
|
```
|
172
174
|
|
173
|
-
meandiff列の絶対値がq_critを上回るとreject列がTrueになるはずだけどA-BがなぜFalseになるか不明。
|
174
|
-
|
175
175
|
|
176
176
|
|
177
177
|
```result
|
@@ -192,13 +192,17 @@
|
|
192
192
|
|
193
193
|
0.45735327]))
|
194
194
|
|
195
|
+
pvals is [0.0562591 0.03714849 0.00177409 0.9 0.34502168 0.45735327]
|
196
|
+
|
197
|
+
reject is [False True True False False False]
|
198
|
+
|
199
|
+
std_pairs is [1.31339255 1.31339255 1.31339255 1.31339255 1.31339255 1.31339255]
|
200
|
+
|
195
|
-
st_range is [5.2 5
|
201
|
+
st_range is [3.95921234 4.26376713 6.3956507 0.3045548 2.43643836 2.13188357]
|
196
202
|
|
197
203
|
q_crit is 4.046412438282385
|
198
204
|
|
199
|
-
st_range > q_crit is [
|
205
|
+
st_range > q_crit is [False True True False False False]
|
200
|
-
|
201
|
-
reject is [False True True False False False]
|
202
206
|
|
203
207
|
Multiple Comparison of Means - Tukey HSD, FWER=0.05
|
204
208
|
|
@@ -223,3 +227,17 @@
|
|
223
227
|
-----------------------------------------------------
|
224
228
|
|
225
229
|
```
|
230
|
+
|
231
|
+
|
232
|
+
|
233
|
+
> Attributesに(pvaluesadjusted p-values from the HSD test)と書かれているので、
|
234
|
+
|
235
|
+
> そのTukeyHSDResultsインスタンスのAttributesの中身を見る方法があればこの問題は解決すると思うのですが。
|
236
|
+
|
237
|
+
|
238
|
+
|
239
|
+
TukeyHSDResults()の引数`pvalues`に渡しているのが`res[8]`でその値が
|
240
|
+
|
241
|
+
`pvals is [0.0562591 0.03714849 0.00177409 0.9 0.34502168 0.45735327]`
|
242
|
+
|
243
|
+
になりますが、期待した出力になっているでしょうか?
|
3
誤記修正
test
CHANGED
@@ -170,7 +170,7 @@
|
|
170
170
|
|
171
171
|
```
|
172
172
|
|
173
|
-
meandiff列の絶対値がq_critを上回ると
|
173
|
+
meandiff列の絶対値がq_critを上回るとreject列がTrueになるはずだけどA-BがなぜFalseになるか不明。
|
174
174
|
|
175
175
|
|
176
176
|
|
2
いろいろ更新
test
CHANGED
@@ -3,3 +3,223 @@
|
|
3
3
|
https://github.com/statsmodels/statsmodels/blob/bc5680db6265d275d89505815a5cec9e9f632239/statsmodels/sandbox/stats/multicomp.py#L1239
|
4
4
|
|
5
5
|
だと思うのでこれ読み解かないといけないと思います。
|
6
|
+
|
7
|
+
|
8
|
+
|
9
|
+
---
|
10
|
+
|
11
|
+
求め方じゃなくて値を確認したいんですかね。
|
12
|
+
|
13
|
+
|
14
|
+
|
15
|
+
コピペ&可変で算出に関連するパラメタをデバッグ出力する版
|
16
|
+
|
17
|
+
```Python
|
18
|
+
|
19
|
+
from statsmodels.stats.multicomp import pairwise_tukeyhsd
|
20
|
+
|
21
|
+
import numpy as np
|
22
|
+
|
23
|
+
from statsmodels.sandbox.stats.multicomp import ( # noqa:F401
|
24
|
+
|
25
|
+
tukeyhsd, MultiComparison, GroupsStats, TukeyHSDResults, get_tukey_pvalue)
|
26
|
+
|
27
|
+
|
28
|
+
|
29
|
+
import copy
|
30
|
+
|
31
|
+
import math
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
import numpy as np
|
36
|
+
|
37
|
+
from numpy.testing import assert_almost_equal, assert_equal
|
38
|
+
|
39
|
+
from scipy import stats, interpolate
|
40
|
+
|
41
|
+
from statsmodels.compat.python import lzip, lrange
|
42
|
+
|
43
|
+
from statsmodels.iolib.table import SimpleTable
|
44
|
+
|
45
|
+
#temporary circular import
|
46
|
+
|
47
|
+
from statsmodels.stats.multitest import multipletests, _ecdf as ecdf, fdrcorrection as fdrcorrection0, fdrcorrection_twostage
|
48
|
+
|
49
|
+
from statsmodels.graphics import utils
|
50
|
+
|
51
|
+
from statsmodels.tools.sm_exceptions import ValueWarning
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
class MultiComparison2(MultiComparison):
|
56
|
+
|
57
|
+
def __init__(self, data, groups, group_order=None):
|
58
|
+
|
59
|
+
super().__init__(data, groups, group_order)
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
def tukeyhsd2(self, alpha=0.05):
|
64
|
+
|
65
|
+
|
66
|
+
|
67
|
+
self.groupstats = GroupsStats(
|
68
|
+
|
69
|
+
np.column_stack([self.data, self.groupintlab]),
|
70
|
+
|
71
|
+
useranks=False)
|
72
|
+
|
73
|
+
|
74
|
+
|
75
|
+
gmeans = self.groupstats.groupmean
|
76
|
+
|
77
|
+
gnobs = self.groupstats.groupnobs
|
78
|
+
|
79
|
+
# var_ = self.groupstats.groupvarwithin()
|
80
|
+
|
81
|
+
# #possibly an error in varcorrection in this case
|
82
|
+
|
83
|
+
var_ = np.var(self.groupstats.groupdemean(), ddof=len(gmeans))
|
84
|
+
|
85
|
+
# res contains: 0:(idx1, idx2), 1:reject, 2:meandiffs, 3: std_pairs,
|
86
|
+
|
87
|
+
# 4:confint, 5:q_crit, 6:df_total, 7:reject2, 8: pvals
|
88
|
+
|
89
|
+
res = tukeyhsd(gmeans, gnobs, var_, df=None, alpha=alpha, q_crit=None)
|
90
|
+
|
91
|
+
|
92
|
+
|
93
|
+
resarr = np.array(lzip(self.groupsunique[res[0][0]],
|
94
|
+
|
95
|
+
self.groupsunique[res[0][1]],
|
96
|
+
|
97
|
+
np.round(res[2], 4),
|
98
|
+
|
99
|
+
np.round(res[8], 4),
|
100
|
+
|
101
|
+
np.round(res[4][:, 0], 4),
|
102
|
+
|
103
|
+
np.round(res[4][:, 1], 4),
|
104
|
+
|
105
|
+
res[1]),
|
106
|
+
|
107
|
+
dtype=[('group1', object),
|
108
|
+
|
109
|
+
('group2', object),
|
110
|
+
|
111
|
+
('meandiff', float),
|
112
|
+
|
113
|
+
('p-adj', float),
|
114
|
+
|
115
|
+
('lower', float),
|
116
|
+
|
117
|
+
('upper', float),
|
118
|
+
|
119
|
+
('reject', np.bool8)])
|
120
|
+
|
121
|
+
results_table = SimpleTable(resarr, headers=resarr.dtype.names)
|
122
|
+
|
123
|
+
results_table.title = 'Multiple Comparison of Means - Tukey HSD, ' + \
|
124
|
+
|
125
|
+
'FWER=%4.2f' % alpha
|
126
|
+
|
127
|
+
print(res)
|
128
|
+
|
129
|
+
st_range = np.abs(res[2])
|
130
|
+
|
131
|
+
print("st_range is ", st_range)
|
132
|
+
|
133
|
+
print("q_crit is ", res[5])
|
134
|
+
|
135
|
+
print("st_range > q_crit is ", st_range > res[5])
|
136
|
+
|
137
|
+
print("reject is ", res[1])
|
138
|
+
|
139
|
+
return TukeyHSDResults(self, results_table, res[5], res[1], res[2],
|
140
|
+
|
141
|
+
res[3], res[4], res[6], res[7], var_, res[8])
|
142
|
+
|
143
|
+
|
144
|
+
|
145
|
+
|
146
|
+
|
147
|
+
def tukey_hsd( lst, ind, n ):
|
148
|
+
|
149
|
+
data_arr = np.hstack( lst )
|
150
|
+
|
151
|
+
ind_arr = np.repeat(ind, n)
|
152
|
+
|
153
|
+
print(MultiComparison2(data_arr, ind_arr).tukeyhsd2(alpha=0.05))
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
|
158
|
+
|
159
|
+
A = np.array([15,9,18,14,18])
|
160
|
+
|
161
|
+
B = np.array([13,8,8,12,7])
|
162
|
+
|
163
|
+
C = np.array([10,6,11,7,12])
|
164
|
+
|
165
|
+
D = np.array([10,7,3,5,7])
|
166
|
+
|
167
|
+
|
168
|
+
|
169
|
+
tukey_hsd( (A,B,C,D), list('ABCD') , 5)
|
170
|
+
|
171
|
+
```
|
172
|
+
|
173
|
+
meandiff列の絶対値がq_critを上回るとFalseになるはずだけどA-BがなぜFalseになるか不明。
|
174
|
+
|
175
|
+
|
176
|
+
|
177
|
+
```result
|
178
|
+
|
179
|
+
((array([0, 0, 0, 1, 1, 2], dtype=int64), array([1, 2, 3, 2, 3, 3], dtype=int64)), array([False, True, True, False, False, False]), array([-5.2, -5.6, -8.4, -0.4, -3.2, -2.8]), array([1.31339255, 1.31339255, 1.31339255, 1.31339255, 1.31339255,
|
180
|
+
|
181
|
+
1.31339255]), array([[-10.51452797, 0.11452797],
|
182
|
+
|
183
|
+
[-10.91452797, -0.28547203],
|
184
|
+
|
185
|
+
[-13.71452797, -3.08547203],
|
186
|
+
|
187
|
+
[ -5.71452797, 4.91452797],
|
188
|
+
|
189
|
+
[ -8.51452797, 2.11452797],
|
190
|
+
|
191
|
+
[ -8.11452797, 2.51452797]]), 4.046412438282385, 16, array([False, True, True, False, False, False]), array([0.0562591 , 0.03714849, 0.00177409, 0.9 , 0.34502168,
|
192
|
+
|
193
|
+
0.45735327]))
|
194
|
+
|
195
|
+
st_range is [5.2 5.6 8.4 0.4 3.2 2.8]
|
196
|
+
|
197
|
+
q_crit is 4.046412438282385
|
198
|
+
|
199
|
+
st_range > q_crit is [ True True True False False False]
|
200
|
+
|
201
|
+
reject is [False True True False False False]
|
202
|
+
|
203
|
+
Multiple Comparison of Means - Tukey HSD, FWER=0.05
|
204
|
+
|
205
|
+
=====================================================
|
206
|
+
|
207
|
+
group1 group2 meandiff p-adj lower upper reject
|
208
|
+
|
209
|
+
-----------------------------------------------------
|
210
|
+
|
211
|
+
A B -5.2 0.0563 -10.5145 0.1145 False
|
212
|
+
|
213
|
+
A C -5.6 0.0371 -10.9145 -0.2855 True
|
214
|
+
|
215
|
+
A D -8.4 0.0018 -13.7145 -3.0855 True
|
216
|
+
|
217
|
+
B C -0.4 0.9 -5.7145 4.9145 False
|
218
|
+
|
219
|
+
B D -3.2 0.345 -8.5145 2.1145 False
|
220
|
+
|
221
|
+
C D -2.8 0.4574 -8.1145 2.5145 False
|
222
|
+
|
223
|
+
-----------------------------------------------------
|
224
|
+
|
225
|
+
```
|
1
勘違い修正
test
CHANGED
@@ -1 +1,5 @@
|
|
1
|
+
実際に演算しているのは
|
2
|
+
|
3
|
+
https://github.com/statsmodels/statsmodels/blob/bc5680db6265d275d89505815a5cec9e9f632239/statsmodels/sandbox/stats/multicomp.py#L1239
|
4
|
+
|
1
|
-
|
5
|
+
だと思うのでこれ読み解かないといけないと思います。
|