回答編集履歴
1
補足を追加
answer
CHANGED
@@ -55,4 +55,74 @@
|
|
55
55
|
|
56
56
|
にて実現出来るかと思います。
|
57
57
|
|
58
|
-
> ``astype()`` 以降はデータを分単位表記に変えているだけです
|
58
|
+
> ``astype()`` 以降はデータを分単位表記に変えているだけです
|
59
|
+
|
60
|
+
---
|
61
|
+
**【追記】**
|
62
|
+
休憩時間を処理するサンプル
|
63
|
+
|
64
|
+
```Python
|
65
|
+
import pandas as pd
|
66
|
+
import datetime
|
67
|
+
|
68
|
+
# 休憩時間(とりあえず適当)
|
69
|
+
BREAK_START = datetime.time(9, 27)
|
70
|
+
BREAK_END = datetime.time(9, 32)
|
71
|
+
|
72
|
+
# datetime.time 型同士の差を求めるUtility関数
|
73
|
+
def time_diff(start_time, end_time):
|
74
|
+
return datetime.datetime.combine(datetime.date.today(), end_time) - datetime.datetime.combine(datetime.date.today(), start_time)
|
75
|
+
|
76
|
+
# Groupby.apply() にて呼ばれる関数(各行に時間を求める)
|
77
|
+
def calc_product_time(data):
|
78
|
+
# 後の処理を行いやすくするために DataFrame化しておく
|
79
|
+
tmp_df = pd.DataFrame({'start_time': data.shift(1).dt.time,
|
80
|
+
'end_time': data.dt.time,
|
81
|
+
'total_time': data.diff()},
|
82
|
+
index = data.index)
|
83
|
+
|
84
|
+
#print(tmp_df)
|
85
|
+
|
86
|
+
# 各行に対して休憩時間を計算する
|
87
|
+
for idx, row in tmp_df.iterrows():
|
88
|
+
# 範囲内に休憩開始・休憩終了時間が含まれる場合
|
89
|
+
if ((row.start_time <= BREAK_START) &
|
90
|
+
(BREAK_START < row.end_time) &
|
91
|
+
(row.start_time <= BREAK_END) &
|
92
|
+
(BREAK_END < row.end_time)):
|
93
|
+
|
94
|
+
tmp_df.loc[idx, 'break_time'] = time_diff(BREAK_START, BREAK_END)
|
95
|
+
|
96
|
+
# 範囲内に休憩開始時間のみ含まれる場合
|
97
|
+
elif ((row.start_time <= BREAK_START) &
|
98
|
+
(BREAK_START < row.end_time) &
|
99
|
+
(BREAK_END >= row.end_time)):
|
100
|
+
|
101
|
+
tmp_df.loc[idx, 'break_time'] = time_diff(BREAK_START, row.end_time)
|
102
|
+
|
103
|
+
# 範囲内に休憩終了時間のみ含まれる場合
|
104
|
+
elif ((row.start_time > BREAK_START) &
|
105
|
+
(row.start_time <= BREAK_END) &
|
106
|
+
(BREAK_END < row.end_time)):
|
107
|
+
|
108
|
+
tmp_df.loc[idx, 'break_time'] = time_diff(row.start_time, BREAK_END)
|
109
|
+
|
110
|
+
# 休憩時間内に、範囲がすべて含まれる場合
|
111
|
+
elif ((row.start_time > BREAK_START) &
|
112
|
+
(BREAK_END >= row.end_time)):
|
113
|
+
tmp_df.loc[idx, 'break_time'] = time_diff(row.start_time, row.end_time)
|
114
|
+
|
115
|
+
# その他(範囲内に休憩なし)
|
116
|
+
else:
|
117
|
+
tmp_df.loc[idx, 'break_time'] = datetime.timedelta(0)
|
118
|
+
|
119
|
+
tmp_df['product_time'] = tmp_df['total_time'] - tmp_df['break_time']
|
120
|
+
#print(tmp_df)
|
121
|
+
|
122
|
+
return tmp_df['product_time']
|
123
|
+
|
124
|
+
df = pd.read_csv('data.csv', parse_dates={'datetime': ['yyyymmdd', 'hhmm']})
|
125
|
+
df['min_per_product'] = df.groupby(['id', df['datetime'].dt.date])['datetime'].apply(calc_product_time)
|
126
|
+
print(df)
|
127
|
+
|
128
|
+
```
|