回答編集履歴

1

追記

2017/11/24 06:38

投稿

mkgrei
mkgrei

スコア8562

test CHANGED
@@ -5,3 +5,191 @@
5
5
 
6
6
 
7
7
  すべてのmap(...)をlist(map(...))のようにlistで囲むと解決する可能性が高いです。
8
+
9
+
10
+
11
+ ---
12
+
13
+ 追記
14
+
15
+ 古いlambda関数の挙動を初めて知りました。
16
+
17
+ 簡潔な解決法はpython2.xを使用することでした。
18
+
19
+
20
+
21
+ 以下にpython3.xで動くコードを載せます。
22
+
23
+ ```python
24
+
25
+ import numpy as np
26
+
27
+ import matplotlib.pyplot as plt
28
+
29
+ import matplotlib.cm as cm
30
+
31
+ import scipy.spatial.distance as dist
32
+
33
+ %matplotlib inline
34
+
35
+
36
+
37
+ def label_cluster_num(means, mesh_points, metrics):
38
+
39
+ def label(point):
40
+
41
+ cluster_label = np.argmin(list(map(lambda mean: metrics(mean, point), means)))
42
+
43
+ return point, cluster_label
44
+
45
+ return list(map(label, mesh_points))
46
+
47
+
48
+
49
+ c_means = np.array([[1, 2], [-3, 4], [-5, -6], [7, -8]])
50
+
51
+ xs = np.linspace(-10, 10, 100)
52
+
53
+ ys = np.linspace(-10, 10, 100)
54
+
55
+ xx, yy = np.meshgrid(xs, ys)
56
+
57
+ mesh_points = np.c_[xx.ravel(), yy.ravel()]
58
+
59
+
60
+
61
+ def show_volonoi_with_metrics(metrics):
62
+
63
+ labeled_mesh_points = label_cluster_num(c_means, mesh_points, metrics=metrics)
64
+
65
+ plt.figure()
66
+
67
+ fig, ax = plt.subplots()
68
+
69
+
70
+
71
+ ax.set_aspect('equal')
72
+
73
+ ax.grid(True, which='both')
74
+
75
+ ax.axhline(y=0, color='k')
76
+
77
+ ax.axvline(x=0, color='k')
78
+
79
+ ax.set_xlim([-10, 10])
80
+
81
+ ax.set_ylim([-10, 10])
82
+
83
+
84
+
85
+ for i in range(0, len(c_means)):
86
+
87
+ cluster_points = list(map(lambda p: p[0], filter(lambda p: p[1] == i, labeled_mesh_points)))
88
+
89
+ xs = list(map(lambda p: p[0], cluster_points))
90
+
91
+ ys = list(map(lambda p: p[1], cluster_points))
92
+
93
+ ax.scatter(xs, ys, color=cm.prism(i / float(len(c_means))), marker='.')
94
+
95
+
96
+
97
+ ax.scatter(list(map(lambda p: p[0], c_means)), list(map(lambda p: p[1], c_means)), color="g", marker='o')
98
+
99
+
100
+
101
+ plt.show()
102
+
103
+
104
+
105
+ show_volonoi_with_metrics(dist.euclidean)
106
+
107
+ ```
108
+
109
+
110
+
111
+ 読みやすいバージョン
112
+
113
+ ```python
114
+
115
+ import numpy as np
116
+
117
+ import matplotlib.pyplot as plt
118
+
119
+ import matplotlib.cm as cm
120
+
121
+ import scipy.spatial.distance as dist
122
+
123
+ %matplotlib inline
124
+
125
+
126
+
127
+ def label_cluster_num(means, mesh_points, metrics):
128
+
129
+ def label(point):
130
+
131
+ cluster_label = np.argmin([metrics(p, point) for p in means])
132
+
133
+ return cluster_label
134
+
135
+ return np.array([label(p) for p in mesh_points])
136
+
137
+
138
+
139
+ c_means = np.array([[1, 2], [-3, 4], [-5, -6], [7, -8]])
140
+
141
+ xs = np.linspace(-10, 10, 100)
142
+
143
+ ys = np.linspace(-10, 10, 100)
144
+
145
+ xx, yy = np.meshgrid(xs, ys)
146
+
147
+ mesh_points = np.c_[xx.ravel(), yy.ravel()]
148
+
149
+
150
+
151
+ def show_volonoi_with_metrics(metrics):
152
+
153
+ labels = label_cluster_num(c_means, mesh_points, metrics=metrics)
154
+
155
+ fig, ax = plt.subplots()
156
+
157
+
158
+
159
+ ax.set_aspect('equal')
160
+
161
+ ax.grid(True, which='both')
162
+
163
+ ax.axhline(y=0, color='k')
164
+
165
+ ax.axvline(x=0, color='k')
166
+
167
+ ax.set_xlim([-10, 10])
168
+
169
+ ax.set_ylim([-10, 10])
170
+
171
+
172
+
173
+ for i in range(0, len(c_means)):
174
+
175
+ cluster_points = mesh_points[labels==i]
176
+
177
+ xs = cluster_points[:, 0]
178
+
179
+ ys = cluster_points[:, 1]
180
+
181
+ ax.scatter(xs, ys, color=cm.prism(i / float(len(c_means))), marker='.')
182
+
183
+
184
+
185
+ ax.scatter(c_means[:, 0], c_means[:, 0], color="g", marker='o')
186
+
187
+
188
+
189
+ plt.show()
190
+
191
+
192
+
193
+ show_volonoi_with_metrics(dist.euclidean)
194
+
195
+ ```