質問編集履歴
1
中略しました。
test
CHANGED
File without changes
|
test
CHANGED
@@ -30,303 +30,7 @@
|
|
30
30
|
|
31
31
|
from google.colab import drive
|
32
32
|
|
33
|
-
drive.mount('/content/drive')
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
import sys
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
sys.path.append('/content/drive/My Drive')
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
import numpy as np
|
46
|
-
|
47
|
-
import ActivationFunction as AF
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
# 3層ニューラルネットワーク
|
52
|
-
|
53
|
-
class ThreeLayerNetwork:
|
54
|
-
|
55
|
-
# コンストラクタ
|
56
|
-
|
57
|
-
def __init__(self, inodes, hnodes, onodes, lr):
|
58
|
-
|
59
|
-
# 各レイヤーのノード数
|
60
|
-
|
61
|
-
self.inodes = inodes
|
62
|
-
|
63
|
-
self.hnodes = hnodes
|
64
|
-
|
65
|
-
self.onodes = onodes
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
# 学習率
|
70
|
-
|
71
|
-
self.lr = lr
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
# 重みの初期化
|
76
|
-
|
77
|
-
self.w_ih = np.random.normal(0.0, 1.0, (self.hnodes, self.inodes))
|
78
|
-
|
79
|
-
self.w_ho = np.random.normal(0.0, 1.0, (self.onodes, self.hnodes))
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
# 活性化関数
|
84
|
-
|
85
|
-
self.af = AF.sigmoid
|
86
|
-
|
87
|
-
self.daf = AF.derivative_sigmoid
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
# 誤差逆伝搬
|
92
|
-
|
93
|
-
def backprop(self, idata, tdata):
|
94
|
-
|
95
|
-
# 縦ベクトルに変換
|
96
|
-
|
97
|
-
o_i = np.array(idata, ndmin=2).T
|
98
|
-
|
99
|
-
t = np.array(tdata, ndmin=2).T
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
# 隠れ層
|
104
|
-
|
105
|
-
x_h = np.dot(self.w_ih, o_i)
|
106
|
-
|
107
|
-
o_h = self.af(x_h)
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
# 出力層
|
112
|
-
|
113
|
-
x_o = np.dot(self.w_ho, o_h)
|
114
|
-
|
115
|
-
o_o = self.af(x_o)
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
# 誤差計算
|
120
|
-
|
121
|
-
e_o = (t - o_o)
|
122
|
-
|
123
|
-
e_h = np.dot(self.w_ho.T, e_o)
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
# 重みの更新
|
128
|
-
|
129
|
-
self.w_ho += self.lr * np.dot((e_o * self.daf(o_o)), o_h.T)
|
130
|
-
|
131
|
-
self.w_ih += self.lr * np.dot((e_h * self.daf(o_h)), o_i.T)
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
# 順伝搬
|
138
|
-
|
139
|
-
def feedforward(self, idata):
|
140
|
-
|
141
|
-
# 入力のリストを縦ベクトルに変換
|
142
|
-
|
143
|
-
o_i = np.array(idata, ndmin=2).T
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
# 隠れ層
|
148
|
-
|
149
|
-
x_h = np.dot(self.w_ih, o_i)
|
150
|
-
|
151
|
-
o_h = self.af(x_h)
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
# 出力層
|
156
|
-
|
157
|
-
x_o = np.dot(self.w_ho, o_h)
|
158
|
-
|
159
|
-
o_o = self.af(x_o)
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
return o_o
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
if __name__=='__main__':
|
168
|
-
|
169
|
-
# パラメータ
|
170
|
-
|
171
|
-
inodes = 784
|
172
|
-
|
173
|
-
hnodes = 100
|
174
|
-
|
175
|
-
onodes = 10
|
176
|
-
|
177
|
-
lr = 0.3
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
# ニューラルネットワークの初期化
|
182
|
-
|
183
|
-
nn = ThreeLayerNetwork(inodes, hnodes, onodes, lr)
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
# トレーニングデータのロード
|
188
|
-
|
189
|
-
training_data_file = open('drive/My Drive/mnist_dataset/mnist_train.csv', 'r')
|
190
|
-
|
191
|
-
training_data_list = training_data_file.readlines()
|
192
|
-
|
193
|
-
training_data_file.close()
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
# テストデータのロード
|
198
|
-
|
199
|
-
test_data_file = open('drive/My Drive/mnist_dataset/mnist_test.csv')
|
200
|
-
|
201
|
-
test_data_list = test_data_file.readlines()
|
202
|
-
|
203
|
-
test_data_file.close()
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
# 学習
|
208
|
-
|
209
|
-
epoch = 10
|
210
|
-
|
211
|
-
for e in range(epoch):
|
212
|
-
|
213
|
-
print('#epoch ', e)
|
214
|
-
|
215
|
-
data_size = len(training_data_list)
|
216
|
-
|
217
|
-
for i in range(data_size):
|
218
|
-
|
219
|
-
if i % 1000 == 0:
|
220
|
-
|
221
|
-
print(' train: {0:>5d} / {1:>5d}'.format(i, data_size))
|
222
|
-
|
223
|
-
val = training_data_list[i].split(',')
|
224
|
-
|
225
|
-
idata = (np.asfarray(val[1:]) / 255.0 * 0.99) + 0.01
|
226
|
-
|
227
|
-
tdata = np.zeros(onodes) + 0.01
|
228
|
-
|
229
|
-
tdata[int(val[0])] = 0.99
|
230
|
-
|
231
|
-
nn.backprop(idata, tdata)
|
232
|
-
|
233
|
-
pass
|
234
|
-
|
235
|
-
pass
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
# テスト
|
240
|
-
|
241
|
-
scoreboard = []
|
242
|
-
|
243
|
-
for record in test_data_list:
|
244
|
-
|
245
|
-
val = record.split(',')
|
246
|
-
|
247
|
-
idata = (np.asfarray(val[1:]) / 255.0 * 0.99) + 0.01
|
248
|
-
|
249
|
-
tlabel = int(val[0])
|
250
|
-
|
251
|
-
predict = nn.feedforward(idata)
|
252
|
-
|
253
|
-
plabel = np.argmax(predict)
|
254
|
-
|
255
|
-
print(plabel)
|
256
|
-
|
257
|
-
scoreboard.append(tlabel == plabel)
|
258
|
-
|
259
|
-
pass
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
scoreboard_array = np.asarray(scoreboard)
|
264
|
-
|
265
|
-
print('performance: ', scoreboard_array.sum() / scoreboard_array.size)
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
33
|
+
中略
|
270
|
-
|
271
|
-
と同じコードを用いて精度をはかった結果が以下
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
|
276
|
-
|
277
|
-
#epoch 0
|
278
|
-
|
279
|
-
train: 0 / 3
|
280
|
-
|
281
|
-
#epoch 1
|
282
|
-
|
283
|
-
train: 0 / 3
|
284
|
-
|
285
|
-
#epoch 2
|
286
|
-
|
287
|
-
train: 0 / 3
|
288
|
-
|
289
|
-
#epoch 3
|
290
|
-
|
291
|
-
train: 0 / 3
|
292
|
-
|
293
|
-
#epoch 4
|
294
|
-
|
295
|
-
train: 0 / 3
|
296
|
-
|
297
|
-
#epoch 5
|
298
|
-
|
299
|
-
train: 0 / 3
|
300
|
-
|
301
|
-
#epoch 6
|
302
|
-
|
303
|
-
train: 0 / 3
|
304
|
-
|
305
|
-
#epoch 7
|
306
|
-
|
307
|
-
train: 0 / 3
|
308
|
-
|
309
|
-
#epoch 8
|
310
|
-
|
311
|
-
train: 0 / 3
|
312
|
-
|
313
|
-
#epoch 9
|
314
|
-
|
315
|
-
train: 0 / 3
|
316
|
-
|
317
|
-
0
|
318
|
-
|
319
|
-
3
|
320
|
-
|
321
|
-
7
|
322
|
-
|
323
|
-
performance: 0.3333333333333333
|
324
|
-
|
325
|
-
となり、
|
326
|
-
|
327
|
-
```python
|
328
|
-
|
329
|
-
print(plabel)
|
330
34
|
|
331
35
|
```
|
332
36
|
|