質問編集履歴
4
修正
    
        title	
    CHANGED
    
    | 
         
            File without changes
         
     | 
    
        body	
    CHANGED
    
    | 
         @@ -28,12 +28,7 @@ 
     | 
|
| 
       28 
28 
     | 
    
         
             
            train,valid_test = split_dataset_random(dataset,n_train,seed=0)
         
     | 
| 
       29 
29 
     | 
    
         
             
            valid,test = split_dataset_random(valid_test,n_valid,seed=0)
         
     | 
| 
       30 
30 
     | 
    
         | 
| 
       31 
     | 
    
         
            -
            c = np.zeros(3)
         
     | 
| 
       32 
     | 
    
         
            -
            for i in range(n_train):
         
     | 
| 
       33 
     | 
    
         
            -
                c[int(train[i][1])] += 1
         
     | 
| 
       34 
31 
     | 
    
         | 
| 
       35 
     | 
    
         
            -
            print(c)
         
     | 
| 
       36 
     | 
    
         
            -
             
     | 
| 
       37 
32 
     | 
    
         
             
            from chainer import iterators
         
     | 
| 
       38 
33 
     | 
    
         
             
            batch_size = 5
         
     | 
| 
       39 
34 
     | 
    
         
             
            train_iter = iterators.SerialIterator(train,batch_size)
         
     | 
3
修正
    
        title	
    CHANGED
    
    | 
         
            File without changes
         
     | 
    
        body	
    CHANGED
    
    | 
         @@ -65,6 +65,7 @@ 
     | 
|
| 
       65 
65 
     | 
    
         
             
            trainer = training.Trainer(updater,(25,'epoch'),out='results/iris_result')
         
     | 
| 
       66 
66 
     | 
    
         | 
| 
       67 
67 
     | 
    
         
             
            from chainer.training import extensions
         
     | 
| 
      
 68 
     | 
    
         
            +
            trainer.extend(extensions.LogReport(trigger=(1,'epoch'),log_name='log'))
         
     | 
| 
       68 
69 
     | 
    
         
             
            trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'main/loss', 'main/accuracy'])))
         
     | 
| 
       69 
70 
     | 
    
         
             
            ```
         
     | 
| 
       70 
71 
     | 
    
         
             
            ```
         
     | 
2
修正
    
        title	
    CHANGED
    
    | 
         
            File without changes
         
     | 
    
        body	
    CHANGED
    
    | 
         @@ -65,7 +65,7 @@ 
     | 
|
| 
       65 
65 
     | 
    
         
             
            trainer = training.Trainer(updater,(25,'epoch'),out='results/iris_result')
         
     | 
| 
       66 
66 
     | 
    
         | 
| 
       67 
67 
     | 
    
         
             
            from chainer.training import extensions
         
     | 
| 
       68 
     | 
    
         
            -
            trainer.extend(extensions. 
     | 
| 
      
 68 
     | 
    
         
            +
            trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'main/loss', 'main/accuracy'])))
         
     | 
| 
       69 
69 
     | 
    
         
             
            ```
         
     | 
| 
       70 
70 
     | 
    
         
             
            ```
         
     | 
| 
       71 
71 
     | 
    
         
             
            trainer.run()
         
     | 
1
追記
    
        title	
    CHANGED
    
    | 
         
            File without changes
         
     | 
    
        body	
    CHANGED
    
    | 
         @@ -1,3 +1,73 @@ 
     | 
|
| 
       1 
1 
     | 
    
         
             
            ###trainer.run()だけを実行したい
         
     | 
| 
       2 
2 
     | 
    
         | 
| 
       3 
     | 
    
         
            -
            Chainerで適当な機械学習モデルを組んで、jupyter notebook上で単独セルで`trainer.run()`を実行すると、1回目は問題なく実行されますが、2回目以降そのセルの実行時に`RuntimeError: cannot run training loop multiple times`が出てしまいます。毎回Restart & Run allを実行しなければならないのでしょうか?
         
     | 
| 
      
 3 
     | 
    
         
            +
            Chainerで適当な機械学習モデルを組んで、jupyter notebook上で単独セルで`trainer.run()`を実行すると、1回目は問題なく実行されますが、2回目以降そのセルの実行時に`RuntimeError: cannot run training loop multiple times`が出てしまいます。毎回Restart & Run allを実行しなければならないのでしょうか?
         
     | 
| 
      
 4 
     | 
    
         
            +
             
     | 
| 
      
 5 
     | 
    
         
            +
            サンプル置いときます。
         
     | 
| 
      
 6 
     | 
    
         
            +
            ```
         
     | 
| 
      
 7 
     | 
    
         
            +
            import chainer
         
     | 
| 
      
 8 
     | 
    
         
            +
            import chainer.functions as F
         
     | 
| 
      
 9 
     | 
    
         
            +
            import chainer.links as L
         
     | 
| 
      
 10 
     | 
    
         
            +
            import numpy as np
         
     | 
| 
      
 11 
     | 
    
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 
      
 12 
     | 
    
         
            +
             
     | 
| 
      
 13 
     | 
    
         
            +
            from sklearn.datasets import load_iris
         
     | 
| 
      
 14 
     | 
    
         
            +
            x,t = load_iris(return_X_y=True)
         
     | 
| 
      
 15 
     | 
    
         
            +
            x = x.astype('float32')
         
     | 
| 
      
 16 
     | 
    
         
            +
            t = t.astype('int32')
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            from sklearn.preprocessing import StandardScaler
         
     | 
| 
      
 19 
     | 
    
         
            +
            sc = StandardScaler()
         
     | 
| 
      
 20 
     | 
    
         
            +
            sc.fit(x)
         
     | 
| 
      
 21 
     | 
    
         
            +
            sc.transform(x)
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
            from chainer.datasets import TupleDataset,split_dataset_random
         
     | 
| 
      
 24 
     | 
    
         
            +
            dataset = TupleDataset(x,t)
         
     | 
| 
      
 25 
     | 
    
         
            +
            n_train = int(len(dataset)*0.7)
         
     | 
| 
      
 26 
     | 
    
         
            +
            n_valid = int(len(dataset)*0.2)
         
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
      
 28 
     | 
    
         
            +
            train,valid_test = split_dataset_random(dataset,n_train,seed=0)
         
     | 
| 
      
 29 
     | 
    
         
            +
            valid,test = split_dataset_random(valid_test,n_valid,seed=0)
         
     | 
| 
      
 30 
     | 
    
         
            +
             
     | 
| 
      
 31 
     | 
    
         
            +
            c = np.zeros(3)
         
     | 
| 
      
 32 
     | 
    
         
            +
            for i in range(n_train):
         
     | 
| 
      
 33 
     | 
    
         
            +
                c[int(train[i][1])] += 1
         
     | 
| 
      
 34 
     | 
    
         
            +
             
     | 
| 
      
 35 
     | 
    
         
            +
            print(c)
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
            from chainer import iterators
         
     | 
| 
      
 38 
     | 
    
         
            +
            batch_size = 5
         
     | 
| 
      
 39 
     | 
    
         
            +
            train_iter = iterators.SerialIterator(train,batch_size)
         
     | 
| 
      
 40 
     | 
    
         
            +
            valid_iter = iterators.SerialIterator(valid,batch_size,shuffle=False,repeat=False)
         
     | 
| 
      
 41 
     | 
    
         
            +
             
     | 
| 
      
 42 
     | 
    
         
            +
             
     | 
| 
      
 43 
     | 
    
         
            +
             
     | 
| 
      
 44 
     | 
    
         
            +
            class Net(chainer.Chain):
         
     | 
| 
      
 45 
     | 
    
         
            +
                def __init__(self,n_mid=10,n_out=3):
         
     | 
| 
      
 46 
     | 
    
         
            +
                    super(Net,self).__init__()
         
     | 
| 
      
 47 
     | 
    
         
            +
                    with self.init_scope():
         
     | 
| 
      
 48 
     | 
    
         
            +
                        self.l1 = L.Linear(None,n_mid)
         
     | 
| 
      
 49 
     | 
    
         
            +
                        self.l2 = L.Linear(n_mid,n_mid)
         
     | 
| 
      
 50 
     | 
    
         
            +
                        self.l3 = L.Linear(n_mid,n_out)
         
     | 
| 
      
 51 
     | 
    
         
            +
             
     | 
| 
      
 52 
     | 
    
         
            +
                def forward(self,x):
         
     | 
| 
      
 53 
     | 
    
         
            +
                    h = F.relu(self.l1(x))
         
     | 
| 
      
 54 
     | 
    
         
            +
                    h = F.relu(self.l2(h))
         
     | 
| 
      
 55 
     | 
    
         
            +
                    h = self.l3(h)
         
     | 
| 
      
 56 
     | 
    
         
            +
                    return h
         
     | 
| 
      
 57 
     | 
    
         
            +
             
     | 
| 
      
 58 
     | 
    
         
            +
            from chainer import optimizers,training
         
     | 
| 
      
 59 
     | 
    
         
            +
            predictor = Net()
         
     | 
| 
      
 60 
     | 
    
         
            +
            net = L.Classifier(predictor)
         
     | 
| 
      
 61 
     | 
    
         
            +
            print(net.predictor)
         
     | 
| 
      
 62 
     | 
    
         
            +
            optimizer = optimizers.SGD().setup(net)
         
     | 
| 
      
 63 
     | 
    
         
            +
            updater = training.StandardUpdater(train_iter,optimizer,device=-1)
         
     | 
| 
      
 64 
     | 
    
         
            +
            from chainer.training.triggers import EarlyStoppingTrigger
         
     | 
| 
      
 65 
     | 
    
         
            +
            trainer = training.Trainer(updater,(25,'epoch'),out='results/iris_result')
         
     | 
| 
      
 66 
     | 
    
         
            +
             
     | 
| 
      
 67 
     | 
    
         
            +
            from chainer.training import extensions
         
     | 
| 
      
 68 
     | 
    
         
            +
            trainer.extend(extensions.LogReport(trigger=(1,'epoch'),log_name='log'))
         
     | 
| 
      
 69 
     | 
    
         
            +
            ```
         
     | 
| 
      
 70 
     | 
    
         
            +
            ```
         
     | 
| 
      
 71 
     | 
    
         
            +
            trainer.run()
         
     | 
| 
      
 72 
     | 
    
         
            +
            ```
         
     | 
| 
      
 73 
     | 
    
         
            +
            これらをセルを分けて実行すると質問の状況が得られます。
         
     |