###numbaのjitを用いて行列の計算を早くしたい。
pythonで関数を定義してjitを使って計算速度を早くしようとしたら次のようなエラーがでました。
このエラーはどうやったら取り除けるのでしょうか?
発生している問題・エラーメッセージ
NumbaWarning: Compilation is falling back to object mode WITH looplifting enabled because Function "ap" failed type inference due to: Invalid use of Function(<built-in function setitem>) with argument(s) of type(s): (readonly array(float64, 1d, C), int64, float64) * parameterized In definition 0: All templates rejected with literals. In definition 1: All templates rejected without literals. In definition 2: All templates rejected with literals. In definition 3: All templates rejected without literals. In definition 4: All templates rejected with literals. In definition 5: All templates rejected without literals. In definition 6: All templates rejected with literals. In definition 7: All templates rejected without literals. In definition 8: TypeError: Cannot modify value of type readonly array(float64, 1d, C) raised from C:\Users\yusei\anaconda3\lib\site-packages\numba\typing\arraydecl.py:179 In definition 9: TypeError: Cannot modify value of type readonly array(float64, 1d, C) raised from C:\Users\yusei\anaconda3\lib\site-packages\numba\typing\arraydecl.py:179 This error is usually caused by passing an argument of a type that is unsupported by the named function. [1] During: typing of setitem at C:\Users\yusei\OneDrive\ドキュメント\Desktop\Desktop.spyder-py3\CIM.py (80) File "CIM.py", line 80: def ap(): <source elided> n_p = np.random.normal(0,np.sqrt(1-e)/2)*e_p ^ @jit C:\Users\yusei\OneDrive\ドキュメント\Desktop\Desktop.spyder-py3\CIM.py:74: NumbaWarning: Compilation is falling back to object mode WITHOUT looplifting enabled because Function "ap" failed type inference due to: cannot determine Numba type of <class 'numba.dispatcher.LiftedLoop'> File "CIM.py", line 77: def ap(): <source elided> for k in range(box-1): ^ @jit C:\Users\yusei\anaconda3\lib\site-packages\numba\object_mode_passes.py:178: NumbaWarning: Function "ap" was compiled in object mode without forceobj=True, but has lifted loops. File "CIM.py", line 77: def ap(): <source elided> for k in range(box-1): ^ state.func_ir.loc)) C:\Users\yusei\anaconda3\lib\site-packages\numba\object_mode_passes.py:188: NumbaDeprecationWarning: Fall-back from the nopython compilation path to the object mode compilation path has been detected, this is deprecated behaviour. For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit File "CIM.py", line 77: def ap(): <source elided> for k in range(box-1): ^ state.func_ir.loc)) C:\Users\yusei\OneDrive\ドキュメント\Desktop\Desktop.spyder-py3\CIM.py:74: NumbaWarning: Compilation is falling back to object mode WITHOUT looplifting enabled because Function "ap" failed type inference due to: Invalid use of Function(<built-in function setitem>) with argument(s) of type(s): (readonly array(float64, 1d, C), int64, float64) * parameterized In definition 0: All templates rejected with literals. In definition 1: All templates rejected without literals. In definition 2: All templates rejected with literals. In definition 3: All templates rejected without literals. In definition 4: All templates rejected with literals. In definition 5: All templates rejected without literals. In definition 6: All templates rejected with literals. In definition 7: All templates rejected without literals. In definition 8: TypeError: Cannot modify value of type readonly array(float64, 1d, C) raised from C:\Users\yusei\anaconda3\lib\site-packages\numba\typing\arraydecl.py:179 In definition 9: TypeError: Cannot modify value of type readonly array(float64, 1d, C) raised from C:\Users\yusei\anaconda3\lib\site-packages\numba\typing\arraydecl.py:179 This error is usually caused by passing an argument of a type that is unsupported by the named function. [1] During: typing of setitem at C:\Users\yusei\OneDrive\ドキュメント\Desktop\Desktop.spyder-py3\CIM.py (80) File "CIM.py", line 80: def ap(): <source elided> n_p = np.random.normal(0,np.sqrt(1-e)/2)*e_p ^ @jit C:\Users\yusei\anaconda3\lib\site-packages\numba\object_mode_passes.py:178: NumbaWarning: Function "ap" was compiled in object mode without forceobj=True. File "CIM.py", line 77: def ap(): <source elided> for k in range(box-1): ^ state.func_ir.loc)) C:\Users\yusei\anaconda3\lib\site-packages\numba\object_mode_passes.py:188: NumbaDeprecationWarning: Fall-back from the nopython compilation path to the object mode compilation path has been detected, this is deprecated behaviour. For more information visit http://numba.pydata.org/numba-doc/latest/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit File "CIM.py", line 77: def ap(): <source elided> for k in range(box-1): ^ state.func_ir.loc))
該当のソースコード
python
1import numpy as np 2import matplotlib.pyplot as plt 3import time 4from numba import jit,prange 5start = time.time() 6spin = 2000 7c = 130 8P_k = 65*10**(-3) 9L = 0.05 10k = 0 11e_p = 2.59e-19 12box = 1000 13P = np.arange(0,1000,1e-4) 14G = np.zeros(spin) 15asd = np.zeros(box*spin).reshape(box,spin) 16 17e =1/12.6 18 19import sys 20import numpy as np 21mat = [] # 結果を入れるリスト(行列) 22 23with open('G22.txt', 'r', encoding='utf-8') as fin: # ファイルを開く 24 25 x = fin.readline() 26 for line in fin.readlines(): # 行をすべて読み込んで1行ずつfor文で回す 27 row = [] # 行のデータを保存するリスト 28 toks = line.split(' ') # 行を半角スペースで分割する 29 for tok in toks: # 分割したトークン列を回す 30 try: 31 num = int(tok) # 整数に変換 32 except ValueError: 33 print(file=sys.stderr) # エラーが出たら画面に出力して 34 continue # スキップ 35 row_append = row.append 36 row_append(num) # 行に保存 37 38 mat.append(row) # 行をnumsに保存 39J= np.zeros(2000*2000).reshape(2000,2000) 40for a in range(19990): 41 x = mat[a][0] 42 y = mat[a][1] 43 z = float(mat[a][2]) 44 J[x-1][y-1]=J[y-1][x-1] = -z 45 46for a in range(spin): 47 N_1 = np.random.normal(0,np.sqrt(G[a])/2)*e_p#自然放出光 48 asd[0][a] = np.sqrt(G[a])*0 + N_1 49 G[a] = np.exp(2*c*np.sqrt(P[0]*L)) 50 51 52@jit 53def saturated(a,p): 54 A_P = np.zeros(50) 55 A_S = np.zeros(50) 56 A_S[0] = a 57 A_P[0] = p 58 59 for l in prange(49): 60 A_P[l+1] = A_P[l] - c*(A_S[l])**2*0.05/50 61 A_S[l+1] = A_S[l] + c*A_P[l]*A_S[l]*0.05/50 62 K = A_S[49]**2/A_S[0]**2 63 out = np.sqrt(K)*a 64 return out 65 66@jit 67def interact(a,b): 68 69 70 result = 0.015*np.dot(J[b],asd[a]) 71 72 return result 73 74@jit 75def ap(): 76 77 for k in range(box-1): 78 for i in range(spin): 79 n_p = float(np.random.normal(0,np.sqrt(1-e)/2)*e_p) 80 asd[k+1][i] = saturated(asd[k][i]*np.sqrt(e)+n_p+interact(k,i),np.sqrt(P[k])) 81 82 83 84 85 86 #plt.plot(asd) 87 #plt.xlabel('kaisuu') 88 #plt.ylabel('sinpuku') 89 A = np.sign(asd[box-1]) 90 sum=0 91 for i in range(spin): 92 for j in range(i+1,spin): 93 sum += 1/2*(-J[i][j])*(1-A[i]*A[j]) 94 95 print(sum) 96for a in range(1): 97 ap() 98elapsedtime = time.time() - start 99print(elapsedtime) 100
試したこと
ここに問題に対して試したことを記載してください。
補足情報(FW/ツールのバージョンなど)
ここにより詳細な情報を記載してください。
回答1件
あなたの回答
tips
プレビュー
バッドをするには、ログインかつ
こちらの条件を満たす必要があります。