回答編集履歴

1

Update

2022/01/11 05:14

投稿

melian
melian

スコア20655

test CHANGED
@@ -28,7 +28,7 @@
28
28
 
29
29
  ジョブズのガレージは製造したコンピュータの動作確認や納品のために使用されていた [21][22]。
30
30
 
31
- '''
31
+ '''.strip()
32
32
 
33
33
 
34
34
 
@@ -42,7 +42,7 @@
42
42
 
43
43
  ジョブズのガレージは製造したコンピュータの動作確認や納品のために使用されていた [21][22]。
44
44
 
45
- '''
45
+ '''.strip()
46
46
 
47
47
 
48
48
 
@@ -62,12 +62,20 @@
62
62
 
63
63
  #
64
64
 
65
- UserWarning: [W007] The model you're using has no word vectors loaded, so the result of the Doc.similarity method will be based on the tagger, parser and NER, which may not give useful similarity judgements. This may happen if you're using one of the small models, e.g. `en_core_web_sm`, which don't ship with word vectors and only use context-sensitive tensors. You can always add your own word vectors, or use one of the larger models instead if available.
65
+ UserWarning: [W007] The model you're using has no word vectors loaded, so the result of the
66
+
67
+ Doc.similarity method will be based on the tagger, parser and NER, which may not give useful
68
+
69
+ similarity judgements. This may happen if you're using one of the small models,
70
+
71
+ e.g. `en_core_web_sm`, which don't ship with word vectors and only use context-sensitive tensors.
72
+
73
+ You can always add your own word vectors, or use one of the larger models instead if available.
66
74
 
67
75
  print(text1.similarity(text2))
68
76
 
69
77
 
70
78
 
71
- 0.9722019460844805
79
+ 0.9702315447787564
72
80
 
73
81
  ```