回答編集履歴
1
Update
test
CHANGED
@@ -28,7 +28,7 @@
|
|
28
28
|
|
29
29
|
ジョブズのガレージは製造したコンピュータの動作確認や納品のために使用されていた [21][22]。
|
30
30
|
|
31
|
-
'''
|
31
|
+
'''.strip()
|
32
32
|
|
33
33
|
|
34
34
|
|
@@ -42,7 +42,7 @@
|
|
42
42
|
|
43
43
|
ジョブズのガレージは製造したコンピュータの動作確認や納品のために使用されていた [21][22]。
|
44
44
|
|
45
|
-
'''
|
45
|
+
'''.strip()
|
46
46
|
|
47
47
|
|
48
48
|
|
@@ -62,12 +62,20 @@
|
|
62
62
|
|
63
63
|
#
|
64
64
|
|
65
|
-
UserWarning: [W007] The model you're using has no word vectors loaded, so the result of the
|
65
|
+
UserWarning: [W007] The model you're using has no word vectors loaded, so the result of the
|
66
|
+
|
67
|
+
Doc.similarity method will be based on the tagger, parser and NER, which may not give useful
|
68
|
+
|
69
|
+
similarity judgements. This may happen if you're using one of the small models,
|
70
|
+
|
71
|
+
e.g. `en_core_web_sm`, which don't ship with word vectors and only use context-sensitive tensors.
|
72
|
+
|
73
|
+
You can always add your own word vectors, or use one of the larger models instead if available.
|
66
74
|
|
67
75
|
print(text1.similarity(text2))
|
68
76
|
|
69
77
|
|
70
78
|
|
71
|
-
0.972
|
79
|
+
0.9702315447787564
|
72
80
|
|
73
81
|
```
|