回答編集履歴

2

2023/11/27 12:39

投稿

melian
melian

スコア21118

test CHANGED
@@ -8,9 +8,8 @@
8
8
  path = '/v1/klines?symbol=USD_JPY&priceType=ASK&interval=1min&date=20231123'
9
9
  response = requests.get(endPoint + path)
10
10
 
11
- json_data = response.json()['data']
11
+ df = pd.DataFrame(response.json()['data'])
12
- df = pd.DataFrame(json_data)
13
- df['openTime'] = pd.to_datetime(df['openTime'].astype(int) / 1000, unit='s')
12
+ df['openTime'] = pd.to_datetime(df['openTime'].astype(int), unit='ms')
14
13
  df = df.set_axis(['Date time', *df.columns[1:].str.title()], axis=1)
15
14
 
16
15
  print(df)

1

2023/11/27 12:36

投稿

melian
melian

スコア21118

test CHANGED
@@ -1,8 +1,33 @@
1
+ > また、画像②のように Pandas で Dataframe化をしたいです
1
2
  ```python
2
- json_data = response.json()
3
+ import requests
4
+ import json
3
- # 後ろから3番目のデータの `high`
5
+ import pandas as pd
4
- print(json_data['data'][-3]['high'])
5
6
 
7
+ endPoint = 'https://forex-api.coin.z.com/public'
8
+ path = '/v1/klines?symbol=USD_JPY&priceType=ASK&interval=1min&date=20231123'
9
+ response = requests.get(endPoint + path)
10
+
11
+ json_data = response.json()['data']
12
+ df = pd.DataFrame(json_data)
13
+ df['openTime'] = pd.to_datetime(df['openTime'].astype(int) / 1000, unit='s')
14
+ df = df.set_axis(['Date time', *df.columns[1:].str.title()], axis=1)
15
+
6
- # 149.61
16
+ print(df)
17
+
18
+ # Date time Open High Low Close
19
+ # 0 2023-11-22 21:00:00 149.664 149.664 149.653 149.655
20
+ # 1 2023-11-22 21:01:00 149.655 149.657 149.654 149.654
21
+ # 2 2023-11-22 21:02:00 149.654 149.665 149.653 149.663
22
+ # 3 2023-11-22 21:03:00 149.663 149.663 149.662 149.663
23
+ # 4 2023-11-22 21:04:00 149.663 149.665 149.663 149.663
24
+ # ... ... ... ... ... ...
25
+ # 1435 2023-11-23 20:55:00 149.609 149.612 149.6 149.609
26
+ # 1436 2023-11-23 20:56:00 149.609 149.609 149.608 149.608
27
+ # 1437 2023-11-23 20:57:00 149.608 149.61 149.608 149.61
28
+ # 1438 2023-11-23 20:58:00 149.61 149.612 149.61 149.611
29
+ # 1439 2023-11-23 20:59:00 149.611 149.634 149.61 149.631
30
+ #
31
+ # [1440 rows x 5 columns]
7
32
  ```
8
33