回答編集履歴
2
test
CHANGED
@@ -8,9 +8,8 @@
|
|
8
8
|
path = '/v1/klines?symbol=USD_JPY&priceType=ASK&interval=1min&date=20231123'
|
9
9
|
response = requests.get(endPoint + path)
|
10
10
|
|
11
|
-
|
11
|
+
df = pd.DataFrame(response.json()['data'])
|
12
|
-
df = pd.DataFrame(json_data)
|
13
|
-
df['openTime'] = pd.to_datetime(df['openTime'].astype(int)
|
12
|
+
df['openTime'] = pd.to_datetime(df['openTime'].astype(int), unit='ms')
|
14
13
|
df = df.set_axis(['Date time', *df.columns[1:].str.title()], axis=1)
|
15
14
|
|
16
15
|
print(df)
|
1
test
CHANGED
@@ -1,8 +1,33 @@
|
|
1
|
+
> また、画像②のように Pandas で Dataframe化をしたいです
|
1
2
|
```python
|
2
|
-
|
3
|
+
import requests
|
4
|
+
import json
|
3
|
-
|
5
|
+
import pandas as pd
|
4
|
-
print(json_data['data'][-3]['high'])
|
5
6
|
|
7
|
+
endPoint = 'https://forex-api.coin.z.com/public'
|
8
|
+
path = '/v1/klines?symbol=USD_JPY&priceType=ASK&interval=1min&date=20231123'
|
9
|
+
response = requests.get(endPoint + path)
|
10
|
+
|
11
|
+
json_data = response.json()['data']
|
12
|
+
df = pd.DataFrame(json_data)
|
13
|
+
df['openTime'] = pd.to_datetime(df['openTime'].astype(int) / 1000, unit='s')
|
14
|
+
df = df.set_axis(['Date time', *df.columns[1:].str.title()], axis=1)
|
15
|
+
|
6
|
-
|
16
|
+
print(df)
|
17
|
+
|
18
|
+
# Date time Open High Low Close
|
19
|
+
# 0 2023-11-22 21:00:00 149.664 149.664 149.653 149.655
|
20
|
+
# 1 2023-11-22 21:01:00 149.655 149.657 149.654 149.654
|
21
|
+
# 2 2023-11-22 21:02:00 149.654 149.665 149.653 149.663
|
22
|
+
# 3 2023-11-22 21:03:00 149.663 149.663 149.662 149.663
|
23
|
+
# 4 2023-11-22 21:04:00 149.663 149.665 149.663 149.663
|
24
|
+
# ... ... ... ... ... ...
|
25
|
+
# 1435 2023-11-23 20:55:00 149.609 149.612 149.6 149.609
|
26
|
+
# 1436 2023-11-23 20:56:00 149.609 149.609 149.608 149.608
|
27
|
+
# 1437 2023-11-23 20:57:00 149.608 149.61 149.608 149.61
|
28
|
+
# 1438 2023-11-23 20:58:00 149.61 149.612 149.61 149.611
|
29
|
+
# 1439 2023-11-23 20:59:00 149.611 149.634 149.61 149.631
|
30
|
+
#
|
31
|
+
# [1440 rows x 5 columns]
|
7
32
|
```
|
8
33
|
|