回答編集履歴
2
訂正……
answer
CHANGED
@@ -24,43 +24,43 @@
|
|
24
24
|
df = pd.read_csv(io.StringIO(text))
|
25
25
|
df2 = pd.read_csv(io.StringIO(text2)).fillna(pd.NaT)
|
26
26
|
|
27
|
-
df.iloc[:, 0] = pd.to_datetime(df.iloc[:, 0]).dt.strftime('%Y%
|
27
|
+
df.iloc[:, 0] = pd.to_datetime(df.iloc[:, 0]).dt.strftime('%Y%m%d').astype(float)
|
28
|
-
df2.iloc[:, 0] = pd.to_datetime(df2.iloc[:, 0]).dt.strftime('%Y%
|
28
|
+
df2.iloc[:, 0] = pd.to_datetime(df2.iloc[:, 0]).dt.strftime('%Y%m%d').astype(float)
|
29
|
-
df2.iloc[:, 1] = pd.to_datetime(df2.iloc[:, 1]).dt.strftime('%Y%
|
29
|
+
df2.iloc[:, 1] = pd.to_datetime(df2.iloc[:, 1]).dt.strftime('%Y%m%d').astype(float)
|
30
|
-
df2.iloc[:, 2] = pd.to_datetime(df2.iloc[:, 2]).dt.strftime('%Y%
|
30
|
+
df2.iloc[:, 2] = pd.to_datetime(df2.iloc[:, 2]).dt.strftime('%Y%m%d').astype(float)
|
31
31
|
|
32
32
|
print(df)
|
33
|
-
#
|
33
|
+
# birthday
|
34
|
-
# 12
|
34
|
+
# 12 19100101.0
|
35
|
-
# 9
|
35
|
+
# 9 19800203.0
|
36
|
-
# 8
|
36
|
+
# 8 19620404.0
|
37
|
-
# 10
|
37
|
+
# 10 19490406.0
|
38
38
|
print(df2)
|
39
39
|
# high_school university1 university2
|
40
|
-
# 8
|
40
|
+
# 8 19770331.0 19850331.0 19990331.0
|
41
|
-
# 9
|
41
|
+
# 9 19950331.0 NaN NaN
|
42
|
-
# 10
|
42
|
+
# 10 19540331.0 19640331.0 NaN
|
43
43
|
```
|
44
44
|
|
45
45
|
として、
|
46
46
|
|
47
47
|
```Python
|
48
|
-
result = df2.sub(df['birthday'], 0) //
|
48
|
+
result = df2.sub(df['birthday'], 0) // 10000
|
49
49
|
print(result.astype('Int64'))
|
50
50
|
# high_school university1 university2
|
51
|
-
# 8
|
51
|
+
# 8 14 22 36
|
52
52
|
# 9 15 <NA> <NA>
|
53
|
-
# 10
|
53
|
+
# 10 4 14 <NA>
|
54
54
|
# 12 <NA> <NA> <NA>
|
55
55
|
```
|
56
56
|
|
57
57
|
あるいは、
|
58
58
|
|
59
59
|
```Python
|
60
|
-
result = df2.sub(df['birthday'].reindex(df2.index), 0) //
|
60
|
+
result = df2.sub(df['birthday'].reindex(df2.index), 0) // 10000
|
61
61
|
print(result.astype('Int64'))
|
62
62
|
# high_school university1 university2
|
63
|
-
# 8
|
63
|
+
# 8 14 22 36
|
64
64
|
# 9 15 <NA> <NA>
|
65
|
-
# 10
|
65
|
+
# 10 4 14 <NA>
|
66
66
|
```
|
1
追記
answer
CHANGED
@@ -2,4 +2,65 @@
|
|
2
2
|
DataFrame2.sub(DataFrame1["birthday"], 0)//pd.Timedelta(365, 'D')
|
3
3
|
```
|
4
4
|
|
5
|
+
---
|
6
|
+
|
7
|
+
追記
|
8
|
+
|
9
|
+
```Python
|
10
|
+
import io
|
11
|
+
import pandas as pd
|
12
|
+
|
13
|
+
text = """birthday
|
14
|
+
12,'1910-01-01'
|
15
|
+
9,'1980-02-03'
|
16
|
+
8,'1962-04-04'
|
17
|
+
10,'1949-04-06'"""
|
18
|
+
text2 = """high_school,university1,university2
|
19
|
+
8,'1977-03-31','1985-03-31','1999-3-31'
|
20
|
+
9,'1995-03-31',,
|
21
|
+
10,'1954-03-31','1964-3-31',
|
22
|
+
"""
|
23
|
+
|
24
|
+
df = pd.read_csv(io.StringIO(text))
|
25
|
+
df2 = pd.read_csv(io.StringIO(text2)).fillna(pd.NaT)
|
26
|
+
|
27
|
+
df.iloc[:, 0] = pd.to_datetime(df.iloc[:, 0]).dt.strftime('%Y%M').astype(float)
|
28
|
+
df2.iloc[:, 0] = pd.to_datetime(df2.iloc[:, 0]).dt.strftime('%Y%M').astype(float)
|
29
|
+
df2.iloc[:, 1] = pd.to_datetime(df2.iloc[:, 1]).dt.strftime('%Y%M').astype(float)
|
30
|
+
df2.iloc[:, 2] = pd.to_datetime(df2.iloc[:, 2]).dt.strftime('%Y%M').astype(float)
|
31
|
+
|
32
|
+
print(df)
|
33
|
+
# birthday
|
34
|
+
# 12 191000.0
|
35
|
+
# 9 198000.0
|
36
|
+
# 8 196200.0
|
37
|
+
# 10 194900.0
|
5
|
-
|
38
|
+
print(df2)
|
39
|
+
# high_school university1 university2
|
40
|
+
# 8 197700.0 198500.0 199900.0
|
41
|
+
# 9 199500.0 NaN NaN
|
42
|
+
# 10 195400.0 196400.0 NaN
|
43
|
+
```
|
44
|
+
|
45
|
+
として、
|
46
|
+
|
47
|
+
```Python
|
48
|
+
result = df2.sub(df['birthday'], 0) // 100
|
49
|
+
print(result.astype('Int64'))
|
50
|
+
# high_school university1 university2
|
51
|
+
# 8 15 23 37
|
52
|
+
# 9 15 <NA> <NA>
|
53
|
+
# 10 5 15 <NA>
|
54
|
+
# 12 <NA> <NA> <NA>
|
55
|
+
```
|
56
|
+
|
57
|
+
あるいは、
|
58
|
+
|
59
|
+
```Python
|
60
|
+
result = df2.sub(df['birthday'].reindex(df2.index), 0) // 100
|
61
|
+
print(result.astype('Int64'))
|
62
|
+
# high_school university1 university2
|
63
|
+
# 8 15 23 37
|
64
|
+
# 9 15 <NA> <NA>
|
65
|
+
# 10 5 15 <NA>
|
66
|
+
```
|