質問編集履歴
1
ソースコードの追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -88,4 +88,376 @@
|
|
88
88
|
|
89
89
|
|
90
90
|
|
91
|
+
|
92
|
+
|
91
93
|
```
|
94
|
+
|
95
|
+
### 該当のソースコード
|
96
|
+
|
97
|
+
|
98
|
+
|
99
|
+
```python
|
100
|
+
|
101
|
+
#! /usr/bin/env python
|
102
|
+
|
103
|
+
# -*- coding: utf-8 -*-
|
104
|
+
|
105
|
+
|
106
|
+
|
107
|
+
from __future__ import division, print_function, absolute_import
|
108
|
+
|
109
|
+
import os
|
110
|
+
|
111
|
+
import datetime
|
112
|
+
|
113
|
+
from timeit import time
|
114
|
+
|
115
|
+
import warnings
|
116
|
+
|
117
|
+
import cv2
|
118
|
+
|
119
|
+
import numpy as np
|
120
|
+
|
121
|
+
import argparse
|
122
|
+
|
123
|
+
#from PIL import Image
|
124
|
+
|
125
|
+
from PIL import Image, ImageFont, ImageDraw
|
126
|
+
|
127
|
+
from yolo import YOLO
|
128
|
+
|
129
|
+
from deep_sort import preprocessing
|
130
|
+
|
131
|
+
from deep_sort import nn_matching
|
132
|
+
|
133
|
+
from deep_sort.detection import Detection
|
134
|
+
|
135
|
+
from deep_sort.tracker import Tracker
|
136
|
+
|
137
|
+
from tools import generate_detections as gdet
|
138
|
+
|
139
|
+
from deep_sort.detection import Detection as ddet
|
140
|
+
|
141
|
+
from collections import deque
|
142
|
+
|
143
|
+
from keras import backend
|
144
|
+
|
145
|
+
|
146
|
+
|
147
|
+
backend.clear_session()
|
148
|
+
|
149
|
+
ap = argparse.ArgumentParser()
|
150
|
+
|
151
|
+
ap.add_argument("-i", "--input",help="path to input video", default = "./test_video/test.avi")
|
152
|
+
|
153
|
+
ap.add_argument("-c", "--class",help="name of class", default = "person")
|
154
|
+
|
155
|
+
args = vars(ap.parse_args())
|
156
|
+
|
157
|
+
|
158
|
+
|
159
|
+
pts = [deque(maxlen=30) for _ in range(9999)]
|
160
|
+
|
161
|
+
warnings.filterwarnings('ignore')
|
162
|
+
|
163
|
+
|
164
|
+
|
165
|
+
# initialize a list of colors to represent each possible class label
|
166
|
+
|
167
|
+
np.random.seed(100)
|
168
|
+
|
169
|
+
COLORS = np.random.randint(0, 255, size=(200, 3),
|
170
|
+
|
171
|
+
dtype="uint8")
|
172
|
+
|
173
|
+
|
174
|
+
|
175
|
+
def main(yolo):
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
start = time.time()
|
180
|
+
|
181
|
+
#Definition of the parameters
|
182
|
+
|
183
|
+
max_cosine_distance = 0.5 #余弦距离的控制阈值
|
184
|
+
|
185
|
+
nn_budget = None
|
186
|
+
|
187
|
+
nms_max_overlap = 0.3 #非极大抑制的阈值
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
counter = []
|
192
|
+
|
193
|
+
#deep_sort
|
194
|
+
|
195
|
+
#model_filename = 'model_data/market1501.pb'
|
196
|
+
|
197
|
+
model_filename = 'model_data/mars-small128.pb'
|
198
|
+
|
199
|
+
encoder = gdet.create_box_encoder(model_filename,batch_size=1)
|
200
|
+
|
201
|
+
|
202
|
+
|
203
|
+
metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
|
204
|
+
|
205
|
+
tracker = Tracker(metric)
|
206
|
+
|
207
|
+
|
208
|
+
|
209
|
+
writeVideo_flag = True
|
210
|
+
|
211
|
+
#video_path = "./output/output.avi"
|
212
|
+
|
213
|
+
video_capture = cv2.VideoCapture(args["input"])
|
214
|
+
|
215
|
+
|
216
|
+
|
217
|
+
if writeVideo_flag:
|
218
|
+
|
219
|
+
# Define the codec and create VideoWriter object
|
220
|
+
|
221
|
+
w = int(video_capture.get(3))
|
222
|
+
|
223
|
+
h = int(video_capture.get(4))
|
224
|
+
|
225
|
+
#fourcc = cv2.VideoWriter_fourcc(*'MJPG')
|
226
|
+
|
227
|
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
228
|
+
|
229
|
+
out = cv2.VideoWriter('./output/'+args["input"][43:57]+ "_" + args["class"] + '_output.avi', fourcc, 15, (w, h))
|
230
|
+
|
231
|
+
list_file = open('detection.txt', 'w')
|
232
|
+
|
233
|
+
frame_index = -1
|
234
|
+
|
235
|
+
|
236
|
+
|
237
|
+
fps = 0.0
|
238
|
+
|
239
|
+
|
240
|
+
|
241
|
+
font = ImageFont.truetype(font='font/yumin.ttf', size=30)
|
242
|
+
|
243
|
+
|
244
|
+
|
245
|
+
while True:
|
246
|
+
|
247
|
+
|
248
|
+
|
249
|
+
ret, frame = video_capture.read() # frame shape 640*480*3
|
250
|
+
|
251
|
+
if ret != True:
|
252
|
+
|
253
|
+
break
|
254
|
+
|
255
|
+
t1 = time.time()
|
256
|
+
|
257
|
+
|
258
|
+
|
259
|
+
# image = Image.fromarray(frame)
|
260
|
+
|
261
|
+
image = Image.fromarray(frame[...,::-1]) #bgr to rgb
|
262
|
+
|
263
|
+
draw = ImageDraw.Draw(image)
|
264
|
+
|
265
|
+
|
266
|
+
|
267
|
+
boxs,class_names = yolo.detect_image(image)
|
268
|
+
|
269
|
+
features = encoder(frame,boxs)
|
270
|
+
|
271
|
+
# score to 1.0 here).
|
272
|
+
|
273
|
+
detections = [Detection(bbox, 1.0, feature) for bbox, feature in zip(boxs, features)]
|
274
|
+
|
275
|
+
# Run non-maxima suppression.
|
276
|
+
|
277
|
+
boxes = np.array([d.tlwh for d in detections])
|
278
|
+
|
279
|
+
scores = np.array([d.confidence for d in detections])
|
280
|
+
|
281
|
+
indices = preprocessing.non_max_suppression(boxes, nms_max_overlap, scores)
|
282
|
+
|
283
|
+
detections = [detections[i] for i in indices]
|
284
|
+
|
285
|
+
|
286
|
+
|
287
|
+
# Call the tracker
|
288
|
+
|
289
|
+
tracker.predict()
|
290
|
+
|
291
|
+
tracker.update(detections)
|
292
|
+
|
293
|
+
|
294
|
+
|
295
|
+
i = int(0)
|
296
|
+
|
297
|
+
indexIDs = []
|
298
|
+
|
299
|
+
c = []
|
300
|
+
|
301
|
+
boxes = []
|
302
|
+
|
303
|
+
for det in detections:
|
304
|
+
|
305
|
+
bbox = det.to_tlbr()
|
306
|
+
|
307
|
+
cv2.rectangle(frame,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,255,255), 2)
|
308
|
+
|
309
|
+
|
310
|
+
|
311
|
+
for track in tracker.tracks:
|
312
|
+
|
313
|
+
if not track.is_confirmed() or track.time_since_update > 1:
|
314
|
+
|
315
|
+
continue
|
316
|
+
|
317
|
+
#boxes.append([track[0], track[1], track[2], track[3]])
|
318
|
+
|
319
|
+
indexIDs.append(int(track.track_id))
|
320
|
+
|
321
|
+
counter.append(int(track.track_id))
|
322
|
+
|
323
|
+
bbox = track.to_tlbr()
|
324
|
+
|
325
|
+
color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]
|
326
|
+
|
327
|
+
|
328
|
+
|
329
|
+
cv2.rectangle(frame, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(color), 3)
|
330
|
+
|
331
|
+
cv2.putText(frame,str(track.track_id),(int(bbox[0]), int(bbox[1] -50)),0, 5e-3 * 150, (color),2)
|
332
|
+
|
333
|
+
if len(class_names) > 0:
|
334
|
+
|
335
|
+
class_name = class_names[0]
|
336
|
+
|
337
|
+
#cv2.putText(frame, str(class_names[0]),(int(bbox[0]), int(bbox[1] -20)),0, 5e-3 * 150, (color),2)
|
338
|
+
|
339
|
+
draw.text((int(bbox[0]), int(bbox[1])), str(class_names[0]), fill=(255, 255, 255), font=font)
|
340
|
+
|
341
|
+
frame = np.array(image[...,::-1])
|
342
|
+
|
343
|
+
#frame = np.array(image)
|
344
|
+
|
345
|
+
i += 1
|
346
|
+
|
347
|
+
#bbox_center_point(x,y)
|
348
|
+
|
349
|
+
center = (int(((bbox[0])+(bbox[2]))/2),int(((bbox[1])+(bbox[3]))/2))
|
350
|
+
|
351
|
+
#track_id[center]
|
352
|
+
|
353
|
+
pts[track.track_id].append(center)
|
354
|
+
|
355
|
+
thickness = 5
|
356
|
+
|
357
|
+
#center point
|
358
|
+
|
359
|
+
cv2.circle(frame, (center), 1, color, thickness)
|
360
|
+
|
361
|
+
|
362
|
+
|
363
|
+
#draw motion path
|
364
|
+
|
365
|
+
for j in range(1, len(pts[track.track_id])):
|
366
|
+
|
367
|
+
if pts[track.track_id][j - 1] is None or pts[track.track_id][j] is None:
|
368
|
+
|
369
|
+
continue
|
370
|
+
|
371
|
+
thickness = int(np.sqrt(64 / float(j + 1)) * 2)
|
372
|
+
|
373
|
+
cv2.line(frame,(pts[track.track_id][j-1]), (pts[track.track_id][j]),(color),thickness)
|
374
|
+
|
375
|
+
#cv2.putText(frame, str(class_names[j]),(int(bbox[0]), int(bbox[1] -20)),0, 5e-3 * 150, (255,255,255),2)
|
376
|
+
|
377
|
+
|
378
|
+
|
379
|
+
count = len(set(counter))
|
380
|
+
|
381
|
+
cv2.putText(frame, "Total Object Counter: "+str(count),(int(20), int(120)),0, 5e-3 * 200, (0,255,0),2)
|
382
|
+
|
383
|
+
cv2.putText(frame, "Current Object Counter: "+str(i),(int(20), int(80)),0, 5e-3 * 200, (0,255,0),2)
|
384
|
+
|
385
|
+
cv2.putText(frame, "FPS: %f"%(fps),(int(20), int(40)),0, 5e-3 * 200, (0,255,0),3)
|
386
|
+
|
387
|
+
cv2.namedWindow("YOLO3_Deep_SORT", 0);
|
388
|
+
|
389
|
+
cv2.resizeWindow('YOLO3_Deep_SORT', 1024, 768);
|
390
|
+
|
391
|
+
cv2.imshow('YOLO3_Deep_SORT', frame)
|
392
|
+
|
393
|
+
|
394
|
+
|
395
|
+
if writeVideo_flag:
|
396
|
+
|
397
|
+
#save a frame
|
398
|
+
|
399
|
+
out.write(frame)
|
400
|
+
|
401
|
+
frame_index = frame_index + 1
|
402
|
+
|
403
|
+
list_file.write(str(frame_index)+' ')
|
404
|
+
|
405
|
+
if len(boxs) != 0:
|
406
|
+
|
407
|
+
for i in range(0,len(boxs)):
|
408
|
+
|
409
|
+
list_file.write(str(boxs[i][0]) + ' '+str(boxs[i][1]) + ' '+str(boxs[i][2]) + ' '+str(boxs[i][3]) + ' ')
|
410
|
+
|
411
|
+
list_file.write('\n')
|
412
|
+
|
413
|
+
fps = ( fps + (1./(time.time()-t1)) ) / 2
|
414
|
+
|
415
|
+
#print(set(counter))
|
416
|
+
|
417
|
+
|
418
|
+
|
419
|
+
# Press Q to stop!
|
420
|
+
|
421
|
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
422
|
+
|
423
|
+
break
|
424
|
+
|
425
|
+
print(" ")
|
426
|
+
|
427
|
+
print("[Finish]")
|
428
|
+
|
429
|
+
end = time.time()
|
430
|
+
|
431
|
+
|
432
|
+
|
433
|
+
if len(pts[track.track_id]) != None:
|
434
|
+
|
435
|
+
print(args["input"][43:57]+": "+ str(count) + " " + str(class_name) +' Found')
|
436
|
+
|
437
|
+
|
438
|
+
|
439
|
+
else:
|
440
|
+
|
441
|
+
print("[No Found]")
|
442
|
+
|
443
|
+
|
444
|
+
|
445
|
+
video_capture.release()
|
446
|
+
|
447
|
+
|
448
|
+
|
449
|
+
if writeVideo_flag:
|
450
|
+
|
451
|
+
out.release()
|
452
|
+
|
453
|
+
list_file.close()
|
454
|
+
|
455
|
+
cv2.destroyAllWindows()
|
456
|
+
|
457
|
+
|
458
|
+
|
459
|
+
if __name__ == '__main__':
|
460
|
+
|
461
|
+
main(YOLO())
|
462
|
+
|
463
|
+
```
|