質問編集履歴
4
コード囲み忘れ
test
CHANGED
File without changes
|
test
CHANGED
@@ -158,6 +158,8 @@
|
|
158
158
|
|
159
159
|
|
160
160
|
|
161
|
+
```python
|
162
|
+
|
161
163
|
df4 = df.copy()
|
162
164
|
|
163
165
|
|
@@ -186,6 +188,8 @@
|
|
186
188
|
|
187
189
|
sns.scatterplot(x='ta', y='m', hue='cluster', data=df4)
|
188
190
|
|
191
|
+
```
|
192
|
+
|
189
193
|
|
190
194
|
|
191
195
|
![イメージ説明](32a22c50bf19936ab2aa15e0abc9e2e8.png)
|
3
LinearRegressionを追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -154,6 +154,44 @@
|
|
154
154
|
|
155
155
|
|
156
156
|
|
157
|
+
#### LinearRegression
|
158
|
+
|
159
|
+
|
160
|
+
|
161
|
+
df4 = df.copy()
|
162
|
+
|
163
|
+
|
164
|
+
|
165
|
+
from sklearn.linear_model import LinearRegression
|
166
|
+
|
167
|
+
|
168
|
+
|
169
|
+
lr = LinearRegression()
|
170
|
+
|
171
|
+
lr.fit(df4['ta'].values.reshape(-1, 1), df4['m'].values.reshape(-1, 1))
|
172
|
+
|
173
|
+
pred_y = lr.predict(df4['ta'].values.reshape(-1, 1)).reshape(-1)
|
174
|
+
|
175
|
+
df4['cluster'] = (df4['m'] < pred_y).astype(int)
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
for name, dfg in df4.groupby('cluster'):
|
180
|
+
|
181
|
+
lr.fit(dfg['ta'].values.reshape(-1, 1), dfg['m'].values.reshape(-1, 1))
|
182
|
+
|
183
|
+
print(name, lr.coef_, lr.intercept_)
|
184
|
+
|
185
|
+
|
186
|
+
|
187
|
+
sns.scatterplot(x='ta', y='m', hue='cluster', data=df4)
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
![イメージ説明](32a22c50bf19936ab2aa15e0abc9e2e8.png)
|
192
|
+
|
193
|
+
|
194
|
+
|
157
195
|
### 補足情報(FW/ツールのバージョンなど)
|
158
196
|
|
159
197
|
|
2
df3を追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -124,6 +124,10 @@
|
|
124
124
|
|
125
125
|
```python
|
126
126
|
|
127
|
+
df3 = df.copy()
|
128
|
+
|
129
|
+
|
130
|
+
|
127
131
|
from sklearn import cluster
|
128
132
|
|
129
133
|
|
1
サンプルデータ追加、GaussianMixtureとSpectralClusteringを追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -38,6 +38,18 @@
|
|
38
38
|
|
39
39
|
```python
|
40
40
|
|
41
|
+
import pandas as pd
|
42
|
+
|
43
|
+
|
44
|
+
|
45
|
+
url = "https://docs.google.com/spreadsheets/d/e/2PACX-1vSA9NhTNG6rcb1BAdVzC2RYgPPCCd0ryo1YconlDj7TK15IAO8rIi3uY9FzRCkXsj48BO4hWtceriKq/pub?gid=0&single=true&output=csv"
|
46
|
+
|
47
|
+
|
48
|
+
|
49
|
+
df = pd.read_csv(url)
|
50
|
+
|
51
|
+
|
52
|
+
|
41
53
|
sns.scatterplot(x='ta', y='m', data=df)
|
42
54
|
|
43
55
|
```
|
@@ -48,7 +60,13 @@
|
|
48
60
|
|
49
61
|
|
50
62
|
|
63
|
+
#### KMeans
|
64
|
+
|
51
65
|
```python
|
66
|
+
|
67
|
+
df1 = df.copy()
|
68
|
+
|
69
|
+
|
52
70
|
|
53
71
|
from sklearn.cluster import KMeans
|
54
72
|
|
@@ -56,17 +74,79 @@
|
|
56
74
|
|
57
75
|
kmeans = KMeans(n_clusters=2, random_state=0)
|
58
76
|
|
77
|
+
|
78
|
+
|
59
|
-
clusters = kmeans.fit(df)
|
79
|
+
clusters = kmeans.fit(df1)
|
80
|
+
|
81
|
+
df1['cluster'] = clusters.labels_
|
60
82
|
|
61
83
|
|
62
84
|
|
85
|
+
sns.scatterplot(x='ta', y='m', hue='cluster', data=df1)
|
86
|
+
|
87
|
+
```
|
88
|
+
|
63
|
-
|
89
|
+
![イメージ説明](e2b2395c12b50c3ac062d8305b8cda6a.png)
|
64
90
|
|
65
91
|
|
66
92
|
|
93
|
+
#### GaussianMixture
|
94
|
+
|
95
|
+
```python
|
96
|
+
|
97
|
+
df2 = df.copy()
|
98
|
+
|
99
|
+
|
100
|
+
|
101
|
+
from sklearn.mixture import GaussianMixture
|
102
|
+
|
103
|
+
|
104
|
+
|
105
|
+
model = GaussianMixture(n_components=2)
|
106
|
+
|
107
|
+
model.fit(df2)
|
108
|
+
|
109
|
+
df2['cluster'] = model.predict(df2)
|
110
|
+
|
111
|
+
|
112
|
+
|
67
|
-
sns.scatterplot(x='ta', y='m', hue='cluster', data=df)
|
113
|
+
sns.scatterplot(x='ta', y='m', hue='cluster', data=df2)
|
68
114
|
|
69
115
|
```
|
116
|
+
|
117
|
+
![イメージ説明](7ee8a9a1129e77289039593222a2f45b.png)
|
118
|
+
|
119
|
+
|
120
|
+
|
121
|
+
#### SpectralClustering
|
122
|
+
|
123
|
+
|
124
|
+
|
125
|
+
```python
|
126
|
+
|
127
|
+
from sklearn import cluster
|
128
|
+
|
129
|
+
|
130
|
+
|
131
|
+
spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity='nearest_neighbors')
|
132
|
+
|
133
|
+
|
134
|
+
|
135
|
+
clusters = spectral.fit(df3)
|
136
|
+
|
137
|
+
|
138
|
+
|
139
|
+
df3['cluster'] = clusters.labels_
|
140
|
+
|
141
|
+
|
142
|
+
|
143
|
+
sns.scatterplot(x='ta', y='m', hue='cluster', data=df3)
|
144
|
+
|
145
|
+
```
|
146
|
+
|
147
|
+
|
148
|
+
|
149
|
+
![イメージ説明](72b2494b8fffbf8c2194355d3d655215.png)
|
70
150
|
|
71
151
|
|
72
152
|
|