質問編集履歴
2
追記
test
CHANGED
File without changes
|
test
CHANGED
@@ -304,38 +304,250 @@
|
|
304
304
|
|
305
305
|
16/16 [==============================] - 0s 15ms/step - loss: 0.0270 - accuracy: 0.9957 - val_loss: 6.4333e-05 - val_accuracy: 1.0000
|
306
306
|
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
|
341
|
-
|
307
|
+
|
308
|
+
|
309
|
+
|
310
|
+
|
311
|
+
|
312
|
+
|
313
|
+
#追記
|
314
|
+
|
315
|
+
train_label
|
316
|
+
|
317
|
+
[[0. 1. 0.]
|
318
|
+
|
319
|
+
[0. 0. 1.]
|
320
|
+
|
321
|
+
[1. 0. 0.]
|
322
|
+
|
323
|
+
[1. 0. 0.]
|
324
|
+
|
325
|
+
[1. 0. 0.]
|
326
|
+
|
327
|
+
[1. 0. 0.]
|
328
|
+
|
329
|
+
[0. 0. 1.]
|
330
|
+
|
331
|
+
[0. 1. 0.]
|
332
|
+
|
333
|
+
[0. 1. 0.]
|
334
|
+
|
335
|
+
[1. 0. 0.]
|
336
|
+
|
337
|
+
[1. 0. 0.]
|
338
|
+
|
339
|
+
[1. 0. 0.]
|
340
|
+
|
341
|
+
[1. 0. 0.]
|
342
|
+
|
343
|
+
[1. 0. 0.]
|
344
|
+
|
345
|
+
[1. 0. 0.]
|
346
|
+
|
347
|
+
[1. 0. 0.]
|
348
|
+
|
349
|
+
[1. 0. 0.]
|
350
|
+
|
351
|
+
[1. 0. 0.]
|
352
|
+
|
353
|
+
[1. 0. 0.]
|
354
|
+
|
355
|
+
[1. 0. 0.]
|
356
|
+
|
357
|
+
[0. 1. 0.]
|
358
|
+
|
359
|
+
[1. 0. 0.]
|
360
|
+
|
361
|
+
[1. 0. 0.]
|
362
|
+
|
363
|
+
[1. 0. 0.]
|
364
|
+
|
365
|
+
......
|
366
|
+
|
367
|
+
|
368
|
+
|
369
|
+
[0. 1. 0.]
|
370
|
+
|
371
|
+
[0. 1. 0.]
|
372
|
+
|
373
|
+
[0. 1. 0.]
|
374
|
+
|
375
|
+
[0. 1. 0.]
|
376
|
+
|
377
|
+
[0. 0. 1.]
|
378
|
+
|
379
|
+
[0. 0. 1.]
|
380
|
+
|
381
|
+
[0. 0. 1.]
|
382
|
+
|
383
|
+
[1. 0. 0.]
|
384
|
+
|
385
|
+
[1. 0. 0.]
|
386
|
+
|
387
|
+
[1. 0. 0.]
|
388
|
+
|
389
|
+
[1. 0. 0.]
|
390
|
+
|
391
|
+
[0. 0. 1.]
|
392
|
+
|
393
|
+
[0. 0. 1.]
|
394
|
+
|
395
|
+
[0. 0. 1.]
|
396
|
+
|
397
|
+
[0. 1. 0.]
|
398
|
+
|
399
|
+
[0. 1. 0.]
|
400
|
+
|
401
|
+
[0. 1. 0.]
|
402
|
+
|
403
|
+
[0. 1. 0.]
|
404
|
+
|
405
|
+
[0. 1. 0.]
|
406
|
+
|
407
|
+
[0. 1. 0.]
|
408
|
+
|
409
|
+
[0. 0. 1.]
|
410
|
+
|
411
|
+
[0. 0. 1.]
|
412
|
+
|
413
|
+
[0. 0. 1.]
|
414
|
+
|
415
|
+
[1. 0. 0.]
|
416
|
+
|
417
|
+
[1. 0. 0.]
|
418
|
+
|
419
|
+
[1. 0. 0.]
|
420
|
+
|
421
|
+
[1. 0. 0.]
|
422
|
+
|
423
|
+
[0. 0. 1.]
|
424
|
+
|
425
|
+
[0. 0. 1.]
|
426
|
+
|
427
|
+
[0. 0. 1.]
|
428
|
+
|
429
|
+
[0. 1. 0.]
|
430
|
+
|
431
|
+
[0. 1. 0.]
|
432
|
+
|
433
|
+
[0. 1. 0.]
|
434
|
+
|
435
|
+
[0. 1. 0.]
|
436
|
+
|
437
|
+
[0. 1. 0.]
|
438
|
+
|
439
|
+
[0. 0. 1.]
|
440
|
+
|
441
|
+
[0. 0. 1.]
|
442
|
+
|
443
|
+
[1. 0. 0.]
|
444
|
+
|
445
|
+
[1. 0. 0.]
|
446
|
+
|
447
|
+
[1. 0. 0.]
|
448
|
+
|
449
|
+
[1. 0. 0.]
|
450
|
+
|
451
|
+
[1. 0. 0.]
|
452
|
+
|
453
|
+
[1. 0. 0.]
|
454
|
+
|
455
|
+
[0. 0. 1.]
|
456
|
+
|
457
|
+
[0. 0. 1.]
|
458
|
+
|
459
|
+
[0. 1. 0.]
|
460
|
+
|
461
|
+
[0. 1. 0.]
|
462
|
+
|
463
|
+
[0. 1. 0.]
|
464
|
+
|
465
|
+
[0. 1. 0.]
|
466
|
+
|
467
|
+
[0. 0. 1.]
|
468
|
+
|
469
|
+
[1. 0. 0.]
|
470
|
+
|
471
|
+
[1. 0. 0.]
|
472
|
+
|
473
|
+
[1. 0. 0.]
|
474
|
+
|
475
|
+
[1. 0. 0.]
|
476
|
+
|
477
|
+
[0. 0. 1.]
|
478
|
+
|
479
|
+
[0. 1. 0.]
|
480
|
+
|
481
|
+
[0. 1. 0.]
|
482
|
+
|
483
|
+
[0. 1. 0.]
|
484
|
+
|
485
|
+
[0. 1. 0.]
|
486
|
+
|
487
|
+
[0. 0. 1.]
|
488
|
+
|
489
|
+
[1. 0. 0.]
|
490
|
+
|
491
|
+
[1. 0. 0.]
|
492
|
+
|
493
|
+
[1. 0. 0.]
|
494
|
+
|
495
|
+
[1. 0. 0.]
|
496
|
+
|
497
|
+
[1. 0. 0.]
|
498
|
+
|
499
|
+
[1. 0. 0.]
|
500
|
+
|
501
|
+
[0. 0. 1.]
|
502
|
+
|
503
|
+
[0. 1. 0.]
|
504
|
+
|
505
|
+
[0. 1. 0.]
|
506
|
+
|
507
|
+
[0. 1. 0.]
|
508
|
+
|
509
|
+
[0. 1. 0.]
|
510
|
+
|
511
|
+
[0. 0. 1.]
|
512
|
+
|
513
|
+
[1. 0. 0.]
|
514
|
+
|
515
|
+
[1. 0. 0.]
|
516
|
+
|
517
|
+
[1. 0. 0.]
|
518
|
+
|
519
|
+
[1. 0. 0.]
|
520
|
+
|
521
|
+
[1. 0. 0.]
|
522
|
+
|
523
|
+
[1. 0. 0.]
|
524
|
+
|
525
|
+
[0. 0. 1.]
|
526
|
+
|
527
|
+
[0. 1. 0.]
|
528
|
+
|
529
|
+
[0. 1. 0.]
|
530
|
+
|
531
|
+
[0. 1. 0.]
|
532
|
+
|
533
|
+
[0. 1. 0.]
|
534
|
+
|
535
|
+
[0. 0. 1.]
|
536
|
+
|
537
|
+
[0. 0. 1.]
|
538
|
+
|
539
|
+
[1. 0. 0.]
|
540
|
+
|
541
|
+
[1. 0. 0.]
|
542
|
+
|
543
|
+
[1. 0. 0.]
|
544
|
+
|
545
|
+
[1. 0. 0.]
|
546
|
+
|
547
|
+
[0. 0. 1.]
|
548
|
+
|
549
|
+
[0. 0. 1.]
|
550
|
+
|
551
|
+
[0. 1. 0.]
|
552
|
+
|
553
|
+
[0. 1. 0.]]
|
1
追記
test
CHANGED
File without changes
|
test
CHANGED
@@ -58,7 +58,15 @@
|
|
58
58
|
|
59
59
|
|
60
60
|
|
61
|
+
adam = optimizers.Adam(lr=0.001)
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=["accuracy"])
|
66
|
+
|
67
|
+
|
68
|
+
|
61
|
-
このようなモデルを作り、3クラスの分類を行ったのですが、val_
|
69
|
+
このようなモデルを作り、3クラスの分類を行ったのですが、val_accuracy が全て1.0000で一定です。なぜこのようになってしまうのか教えていただきたいです.
|
62
70
|
|
63
71
|
|
64
72
|
|