質問編集履歴

2

追記

2021/10/29 01:49

投稿

Riri09020500
Riri09020500

スコア6

test CHANGED
File without changes
test CHANGED
@@ -304,38 +304,250 @@
304
304
 
305
305
  16/16 [==============================] - 0s 15ms/step - loss: 0.0270 - accuracy: 0.9957 - val_loss: 6.4333e-05 - val_accuracy: 1.0000
306
306
 
307
- Epoch 31/50
308
-
309
- 16/16 [==============================] - 0s 13ms/step - loss: 0.0048 - accuracy: 1.0000 - val_loss: 5.3226e-05 - val_accuracy: 1.0000
310
-
311
- Epoch 32/50
312
-
313
- 16/16 [==============================] - 0s 11ms/step - loss: 0.0026 - accuracy: 1.0000 - val_loss: 4.6741e-06 - val_accuracy: 1.0000
314
-
315
- Epoch 33/50
316
-
317
- 16/16 [==============================] - 0s 12ms/step - loss: 0.0038 - accuracy: 1.0000 - val_loss: 3.9401e-06 - val_accuracy: 1.0000
318
-
319
- Epoch 34/50
320
-
321
- 16/16 [==============================] - 0s 13ms/step - loss: 0.0010 - accuracy: 1.0000 - val_loss: 1.1241e-04 - val_accuracy: 1.0000
322
-
323
- Epoch 35/50
324
-
325
- 16/16 [==============================] - 0s 11ms/step - loss: 0.0018 - accuracy: 1.0000 - val_loss: 4.1115e-05 - val_accuracy: 1.0000
326
-
327
- Epoch 36/50
328
-
329
- 16/16 [==============================] - 0s 13ms/step - loss: 0.0016 - accuracy: 1.0000 - val_loss: 9.4200e-06 - val_accuracy: 1.0000
330
-
331
- Epoch 37/50
332
-
333
- 16/16 [==============================] - 0s 14ms/step - loss: 0.0014 - accuracy: 1.0000 - val_loss: 2.0548e-06 - val_accuracy: 1.0000
334
-
335
- Epoch 38/50
336
-
337
- 16/16 [==============================] - 0s 13ms/step - loss: 0.0035 - accuracy: 1.0000 - val_loss: 1.0007e-06 - val_accuracy: 1.0000
338
-
339
- Epoch 39/50
340
-
341
- 16/16 [==============================] - 0s 19ms/step - loss: 2.3781e-04 - accuracy: 1.0000 - val_loss: 8.0309e-07 - val_accuracy: 1.0000
307
+
308
+
309
+
310
+
311
+
312
+
313
+ #追記
314
+
315
+ train_label
316
+
317
+ [[0. 1. 0.]
318
+
319
+ [0. 0. 1.]
320
+
321
+ [1. 0. 0.]
322
+
323
+ [1. 0. 0.]
324
+
325
+ [1. 0. 0.]
326
+
327
+ [1. 0. 0.]
328
+
329
+ [0. 0. 1.]
330
+
331
+ [0. 1. 0.]
332
+
333
+ [0. 1. 0.]
334
+
335
+ [1. 0. 0.]
336
+
337
+ [1. 0. 0.]
338
+
339
+ [1. 0. 0.]
340
+
341
+ [1. 0. 0.]
342
+
343
+ [1. 0. 0.]
344
+
345
+ [1. 0. 0.]
346
+
347
+ [1. 0. 0.]
348
+
349
+ [1. 0. 0.]
350
+
351
+ [1. 0. 0.]
352
+
353
+ [1. 0. 0.]
354
+
355
+ [1. 0. 0.]
356
+
357
+ [0. 1. 0.]
358
+
359
+ [1. 0. 0.]
360
+
361
+ [1. 0. 0.]
362
+
363
+ [1. 0. 0.]
364
+
365
+ ......
366
+
367
+
368
+
369
+ [0. 1. 0.]
370
+
371
+ [0. 1. 0.]
372
+
373
+ [0. 1. 0.]
374
+
375
+ [0. 1. 0.]
376
+
377
+ [0. 0. 1.]
378
+
379
+ [0. 0. 1.]
380
+
381
+ [0. 0. 1.]
382
+
383
+ [1. 0. 0.]
384
+
385
+ [1. 0. 0.]
386
+
387
+ [1. 0. 0.]
388
+
389
+ [1. 0. 0.]
390
+
391
+ [0. 0. 1.]
392
+
393
+ [0. 0. 1.]
394
+
395
+ [0. 0. 1.]
396
+
397
+ [0. 1. 0.]
398
+
399
+ [0. 1. 0.]
400
+
401
+ [0. 1. 0.]
402
+
403
+ [0. 1. 0.]
404
+
405
+ [0. 1. 0.]
406
+
407
+ [0. 1. 0.]
408
+
409
+ [0. 0. 1.]
410
+
411
+ [0. 0. 1.]
412
+
413
+ [0. 0. 1.]
414
+
415
+ [1. 0. 0.]
416
+
417
+ [1. 0. 0.]
418
+
419
+ [1. 0. 0.]
420
+
421
+ [1. 0. 0.]
422
+
423
+ [0. 0. 1.]
424
+
425
+ [0. 0. 1.]
426
+
427
+ [0. 0. 1.]
428
+
429
+ [0. 1. 0.]
430
+
431
+ [0. 1. 0.]
432
+
433
+ [0. 1. 0.]
434
+
435
+ [0. 1. 0.]
436
+
437
+ [0. 1. 0.]
438
+
439
+ [0. 0. 1.]
440
+
441
+ [0. 0. 1.]
442
+
443
+ [1. 0. 0.]
444
+
445
+ [1. 0. 0.]
446
+
447
+ [1. 0. 0.]
448
+
449
+ [1. 0. 0.]
450
+
451
+ [1. 0. 0.]
452
+
453
+ [1. 0. 0.]
454
+
455
+ [0. 0. 1.]
456
+
457
+ [0. 0. 1.]
458
+
459
+ [0. 1. 0.]
460
+
461
+ [0. 1. 0.]
462
+
463
+ [0. 1. 0.]
464
+
465
+ [0. 1. 0.]
466
+
467
+ [0. 0. 1.]
468
+
469
+ [1. 0. 0.]
470
+
471
+ [1. 0. 0.]
472
+
473
+ [1. 0. 0.]
474
+
475
+ [1. 0. 0.]
476
+
477
+ [0. 0. 1.]
478
+
479
+ [0. 1. 0.]
480
+
481
+ [0. 1. 0.]
482
+
483
+ [0. 1. 0.]
484
+
485
+ [0. 1. 0.]
486
+
487
+ [0. 0. 1.]
488
+
489
+ [1. 0. 0.]
490
+
491
+ [1. 0. 0.]
492
+
493
+ [1. 0. 0.]
494
+
495
+ [1. 0. 0.]
496
+
497
+ [1. 0. 0.]
498
+
499
+ [1. 0. 0.]
500
+
501
+ [0. 0. 1.]
502
+
503
+ [0. 1. 0.]
504
+
505
+ [0. 1. 0.]
506
+
507
+ [0. 1. 0.]
508
+
509
+ [0. 1. 0.]
510
+
511
+ [0. 0. 1.]
512
+
513
+ [1. 0. 0.]
514
+
515
+ [1. 0. 0.]
516
+
517
+ [1. 0. 0.]
518
+
519
+ [1. 0. 0.]
520
+
521
+ [1. 0. 0.]
522
+
523
+ [1. 0. 0.]
524
+
525
+ [0. 0. 1.]
526
+
527
+ [0. 1. 0.]
528
+
529
+ [0. 1. 0.]
530
+
531
+ [0. 1. 0.]
532
+
533
+ [0. 1. 0.]
534
+
535
+ [0. 0. 1.]
536
+
537
+ [0. 0. 1.]
538
+
539
+ [1. 0. 0.]
540
+
541
+ [1. 0. 0.]
542
+
543
+ [1. 0. 0.]
544
+
545
+ [1. 0. 0.]
546
+
547
+ [0. 0. 1.]
548
+
549
+ [0. 0. 1.]
550
+
551
+ [0. 1. 0.]
552
+
553
+ [0. 1. 0.]]

1

追記

2021/10/29 01:49

投稿

Riri09020500
Riri09020500

スコア6

test CHANGED
File without changes
test CHANGED
@@ -58,7 +58,15 @@
58
58
 
59
59
 
60
60
 
61
+ adam = optimizers.Adam(lr=0.001)
62
+
63
+
64
+
65
+ model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=["accuracy"])
66
+
67
+
68
+
61
- このようなモデルを作り、3クラスの分類を行ったのですが、val_loss が全て1.0000で一定です。なぜこのようになってしまうのか教えていただきたいです.
69
+ このようなモデルを作り、3クラスの分類を行ったのですが、val_accuracy が全て1.0000で一定です。なぜこのようになってしまうのか教えていただきたいです.
62
70
 
63
71
 
64
72