質問編集履歴
1
全体のソースコードを追加しました。
test
CHANGED
File without changes
|
test
CHANGED
@@ -2,7 +2,9 @@
|
|
2
2
|
|
3
3
|
|
4
4
|
|
5
|
-
画像を入力としていて、「画像の名前.txt」というファイルに実行結果を保存したいです。
|
5
|
+
画像を入力としていて、「画像の名前.txt」というファイルに実行結果を保存したいです。保存先はカレントディレクトリです。
|
6
|
+
|
7
|
+
複数の画像を入力としたいため、.txtファイルの区別をしたいです。
|
6
8
|
|
7
9
|
|
8
10
|
|
@@ -14,6 +16,434 @@
|
|
14
16
|
|
15
17
|
|
16
18
|
|
19
|
+
####全体のソースコード
|
20
|
+
|
21
|
+
```Python
|
22
|
+
|
23
|
+
"""Utils for monoDepth.
|
24
|
+
|
25
|
+
"""
|
26
|
+
|
27
|
+
import sys
|
28
|
+
|
29
|
+
import re
|
30
|
+
|
31
|
+
import numpy as np
|
32
|
+
|
33
|
+
import cv2
|
34
|
+
|
35
|
+
import torch
|
36
|
+
|
37
|
+
|
38
|
+
|
39
|
+
|
40
|
+
|
41
|
+
def read_pfm(path):
|
42
|
+
|
43
|
+
"""Read pfm file.
|
44
|
+
|
45
|
+
|
46
|
+
|
47
|
+
Args:
|
48
|
+
|
49
|
+
path (str): path to file
|
50
|
+
|
51
|
+
|
52
|
+
|
53
|
+
Returns:
|
54
|
+
|
55
|
+
tuple: (data, scale)
|
56
|
+
|
57
|
+
"""
|
58
|
+
|
59
|
+
with open(path, "rb") as file:
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
color = None
|
64
|
+
|
65
|
+
width = None
|
66
|
+
|
67
|
+
height = None
|
68
|
+
|
69
|
+
scale = None
|
70
|
+
|
71
|
+
endian = None
|
72
|
+
|
73
|
+
|
74
|
+
|
75
|
+
header = file.readline().rstrip()
|
76
|
+
|
77
|
+
if header.decode("ascii") == "PF":
|
78
|
+
|
79
|
+
color = True
|
80
|
+
|
81
|
+
elif header.decode("ascii") == "Pf":
|
82
|
+
|
83
|
+
color = False
|
84
|
+
|
85
|
+
else:
|
86
|
+
|
87
|
+
raise Exception("Not a PFM file: " + path)
|
88
|
+
|
89
|
+
|
90
|
+
|
91
|
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
92
|
+
|
93
|
+
if dim_match:
|
94
|
+
|
95
|
+
width, height = list(map(int, dim_match.groups()))
|
96
|
+
|
97
|
+
else:
|
98
|
+
|
99
|
+
raise Exception("Malformed PFM header.")
|
100
|
+
|
101
|
+
|
102
|
+
|
103
|
+
scale = float(file.readline().decode("ascii").rstrip())
|
104
|
+
|
105
|
+
if scale < 0:
|
106
|
+
|
107
|
+
# little-endian
|
108
|
+
|
109
|
+
endian = "<"
|
110
|
+
|
111
|
+
scale = -scale
|
112
|
+
|
113
|
+
else:
|
114
|
+
|
115
|
+
# big-endian
|
116
|
+
|
117
|
+
endian = ">"
|
118
|
+
|
119
|
+
|
120
|
+
|
121
|
+
data = np.fromfile(file, endian + "f")
|
122
|
+
|
123
|
+
shape = (height, width, 3) if color else (height, width)
|
124
|
+
|
125
|
+
|
126
|
+
|
127
|
+
data = np.reshape(data, shape)
|
128
|
+
|
129
|
+
data = np.flipud(data)
|
130
|
+
|
131
|
+
|
132
|
+
|
133
|
+
return data, scale
|
134
|
+
|
135
|
+
|
136
|
+
|
137
|
+
|
138
|
+
|
139
|
+
def write_pfm(path, image, scale=1):
|
140
|
+
|
141
|
+
"""Write pfm file.
|
142
|
+
|
143
|
+
|
144
|
+
|
145
|
+
Args:
|
146
|
+
|
147
|
+
path (str): pathto file
|
148
|
+
|
149
|
+
image (array): data
|
150
|
+
|
151
|
+
scale (int, optional): Scale. Defaults to 1.
|
152
|
+
|
153
|
+
"""
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
with open(path, "wb") as file:
|
158
|
+
|
159
|
+
color = None
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
if image.dtype.name != "float32":
|
164
|
+
|
165
|
+
raise Exception("Image dtype must be float32.")
|
166
|
+
|
167
|
+
|
168
|
+
|
169
|
+
image = np.flipud(image)
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
174
|
+
|
175
|
+
color = True
|
176
|
+
|
177
|
+
elif (
|
178
|
+
|
179
|
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
180
|
+
|
181
|
+
): # greyscale
|
182
|
+
|
183
|
+
color = False
|
184
|
+
|
185
|
+
else:
|
186
|
+
|
187
|
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
file.write("PF\n" if color else "Pf\n".encode())
|
192
|
+
|
193
|
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
194
|
+
|
195
|
+
|
196
|
+
|
197
|
+
endian = image.dtype.byteorder
|
198
|
+
|
199
|
+
|
200
|
+
|
201
|
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
202
|
+
|
203
|
+
scale = -scale
|
204
|
+
|
205
|
+
|
206
|
+
|
207
|
+
file.write("%f\n".encode() % scale)
|
208
|
+
|
209
|
+
|
210
|
+
|
211
|
+
image.tofile(file)
|
212
|
+
|
213
|
+
|
214
|
+
|
215
|
+
|
216
|
+
|
217
|
+
def read_image(path):
|
218
|
+
|
219
|
+
"""Read image and output RGB image (0-1).
|
220
|
+
|
221
|
+
|
222
|
+
|
223
|
+
Args:
|
224
|
+
|
225
|
+
path (str): path to file
|
226
|
+
|
227
|
+
|
228
|
+
|
229
|
+
Returns:
|
230
|
+
|
231
|
+
array: RGB image (0-1)
|
232
|
+
|
233
|
+
"""
|
234
|
+
|
235
|
+
img = cv2.imread(path)
|
236
|
+
|
237
|
+
|
238
|
+
|
239
|
+
if img.ndim == 2:
|
240
|
+
|
241
|
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
242
|
+
|
243
|
+
|
244
|
+
|
245
|
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
246
|
+
|
247
|
+
|
248
|
+
|
249
|
+
return img
|
250
|
+
|
251
|
+
|
252
|
+
|
253
|
+
|
254
|
+
|
255
|
+
def resize_image(img):
|
256
|
+
|
257
|
+
"""Resize image and make it fit for network.
|
258
|
+
|
259
|
+
|
260
|
+
|
261
|
+
Args:
|
262
|
+
|
263
|
+
img (array): image
|
264
|
+
|
265
|
+
|
266
|
+
|
267
|
+
Returns:
|
268
|
+
|
269
|
+
tensor: data ready for network
|
270
|
+
|
271
|
+
"""
|
272
|
+
|
273
|
+
height_orig = img.shape[0]
|
274
|
+
|
275
|
+
width_orig = img.shape[1]
|
276
|
+
|
277
|
+
|
278
|
+
|
279
|
+
if width_orig > height_orig:
|
280
|
+
|
281
|
+
scale = width_orig / 384
|
282
|
+
|
283
|
+
else:
|
284
|
+
|
285
|
+
scale = height_orig / 384
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
290
|
+
|
291
|
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
292
|
+
|
293
|
+
|
294
|
+
|
295
|
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
296
|
+
|
297
|
+
|
298
|
+
|
299
|
+
img_resized = (
|
300
|
+
|
301
|
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
302
|
+
|
303
|
+
)
|
304
|
+
|
305
|
+
img_resized = img_resized.unsqueeze(0)
|
306
|
+
|
307
|
+
|
308
|
+
|
309
|
+
return img_resized
|
310
|
+
|
311
|
+
|
312
|
+
|
313
|
+
|
314
|
+
|
315
|
+
def resize_depth(depth, width, height):
|
316
|
+
|
317
|
+
"""Resize depth map and bring to CPU (numpy).
|
318
|
+
|
319
|
+
|
320
|
+
|
321
|
+
Args:
|
322
|
+
|
323
|
+
depth (tensor): depth
|
324
|
+
|
325
|
+
width (int): image width
|
326
|
+
|
327
|
+
height (int): image height
|
328
|
+
|
329
|
+
|
330
|
+
|
331
|
+
Returns:
|
332
|
+
|
333
|
+
array: processed depth
|
334
|
+
|
335
|
+
"""
|
336
|
+
|
337
|
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
338
|
+
|
339
|
+
|
340
|
+
|
341
|
+
depth_resized = cv2.resize(
|
342
|
+
|
343
|
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
344
|
+
|
345
|
+
)
|
346
|
+
|
347
|
+
|
348
|
+
|
349
|
+
return depth_resized
|
350
|
+
|
351
|
+
|
352
|
+
|
353
|
+
def write_depth(path, depth, bits=1 , colored=False):
|
354
|
+
|
355
|
+
"""Write depth map to pfm and png file.
|
356
|
+
|
357
|
+
|
358
|
+
|
359
|
+
Args:
|
360
|
+
|
361
|
+
path (str): filepath without extension
|
362
|
+
|
363
|
+
depth (array): depth
|
364
|
+
|
365
|
+
"""
|
366
|
+
|
367
|
+
# write_pfm(path + ".pfm", depth.astype(np.float32))
|
368
|
+
|
369
|
+
if colored == True:
|
370
|
+
|
371
|
+
bits = 1
|
372
|
+
|
373
|
+
|
374
|
+
|
375
|
+
depth_min = depth.min()
|
376
|
+
|
377
|
+
depth_max = depth.max()
|
378
|
+
|
379
|
+
|
380
|
+
|
381
|
+
max_val = (2**(8*bits))-1 #8bit演算で計算するときの最大値
|
382
|
+
|
383
|
+
# if depth_max>max_val:
|
384
|
+
|
385
|
+
# print('Warning: Depth being clipped')
|
386
|
+
|
387
|
+
#
|
388
|
+
|
389
|
+
# if depth_max - depth_min > np.finfo("float").eps:
|
390
|
+
|
391
|
+
# out = depth
|
392
|
+
|
393
|
+
# out [depth > max_val] = max_val
|
394
|
+
|
395
|
+
# else:
|
396
|
+
|
397
|
+
# out = 0
|
398
|
+
|
399
|
+
|
400
|
+
|
401
|
+
#最大値最小値
|
402
|
+
|
403
|
+
print(str(depth_min)+","+str(depth_max))
|
404
|
+
|
405
|
+
with open('min,max.txt', 'w') as f:
|
406
|
+
|
407
|
+
print(str(depth_min)+","+str(depth_max), file=f)
|
408
|
+
|
409
|
+
cv2.imwrite(path+'.txt')
|
410
|
+
|
411
|
+
|
412
|
+
|
413
|
+
if depth_max - depth_min > np.finfo("float").eps:
|
414
|
+
|
415
|
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
416
|
+
|
417
|
+
else:
|
418
|
+
|
419
|
+
out = 0
|
420
|
+
|
421
|
+
|
422
|
+
|
423
|
+
if bits == 1 or colored:
|
424
|
+
|
425
|
+
out = out.astype("uint8")
|
426
|
+
|
427
|
+
if colored:
|
428
|
+
|
429
|
+
out = cv2.applyColorMap(out,cv2.COLORMAP_INFERNO)
|
430
|
+
|
431
|
+
cv2.imwrite(path+'.png', out)
|
432
|
+
|
433
|
+
elif bits == 2:
|
434
|
+
|
435
|
+
cv2.imwrite(path+'.png', out.astype("uint16"))
|
436
|
+
|
437
|
+
|
438
|
+
|
439
|
+
return
|
440
|
+
|
441
|
+
|
442
|
+
|
443
|
+
|
444
|
+
|
445
|
+
```
|
446
|
+
|
17
447
|
### 該当のソースコード
|
18
448
|
|
19
449
|
|