質問編集履歴
4
画像の前処理コードの反映
test
CHANGED
File without changes
|
test
CHANGED
@@ -92,276 +92,458 @@
|
|
92
92
|
|
93
93
|
```
|
94
94
|
|
95
|
+
|
96
|
+
|
95
|
-
|
97
|
+
下記に記載したのがエラー内容
|
98
|
+
|
99
|
+
|
96
100
|
|
97
101
|
```python
|
98
102
|
|
99
|
-
i
|
103
|
+
WARNING:tensorflow:Model was constructed with shape (None, 4, 4, 512) for input KerasTensor(type_spec=TensorSpec(shape=(None, 4, 4, 512), dtype=tf.float32, name='flatten_input'), name='flatten_input', description="created by layer 'flatten_input'"), but it was called on an input with incompatible shape (None, 150, 150, 3).
|
104
|
+
|
105
|
+
---------------------------------------------------------------------------
|
106
|
+
|
107
|
+
ValueError Traceback (most recent call last)
|
108
|
+
|
109
|
+
<ipython-input-12-baa28c867e4e> in <module>
|
110
|
+
|
111
|
+
35 model = load_model(keras_param)
|
112
|
+
|
113
|
+
36 img = load_image(testpic)
|
114
|
+
|
115
|
+
---> 37 prd = model.predict(np.array([img]))
|
116
|
+
|
117
|
+
38 # print(prd) # 精度の表示
|
118
|
+
|
119
|
+
39 prelabel = np.argmax(prd, axis=1)
|
100
120
|
|
101
121
|
```
|
102
122
|
|
103
|
-
|
104
|
-
|
105
|
-
|
123
|
+
学習済みファイルの作成コード
|
106
|
-
|
107
|
-
|
108
124
|
|
109
125
|
```python
|
110
126
|
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
127
|
+
from keras.applications.vgg16 import VGG16
|
128
|
+
|
129
|
+
from keras.preprocessing.image import ImageDataGenerator
|
130
|
+
|
131
|
+
from keras.layers import Input
|
132
|
+
|
133
|
+
import numpy as np
|
134
|
+
|
135
|
+
import os
|
136
|
+
|
137
|
+
|
138
|
+
|
139
|
+
num_train =2000
|
140
|
+
|
141
|
+
num_validation=800
|
142
|
+
|
143
|
+
img_h,img_w=150,150
|
144
|
+
|
145
|
+
channels=3
|
146
|
+
|
147
|
+
batch_size=32
|
148
|
+
|
149
|
+
train_data_dir='data/train'
|
150
|
+
|
151
|
+
validation_data_dir='data/validation'
|
152
|
+
|
153
|
+
result_dir='results'
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
if not os.path.exists(result_dir):
|
158
|
+
|
159
|
+
os.mkdir(result_dir)
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
def save_VGG16_outputs():
|
164
|
+
|
165
|
+
model=VGG16(
|
166
|
+
|
167
|
+
include_top=False,
|
168
|
+
|
169
|
+
weights='imagenet',
|
170
|
+
|
171
|
+
input_shape=(img_h,img_w,channels))
|
172
|
+
|
173
|
+
|
174
|
+
|
175
|
+
model.summary()
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
datagen=ImageDataGenerator(rescale=1.0/255)
|
180
|
+
|
181
|
+
|
182
|
+
|
183
|
+
train_generator=datagen.flow_from_directory(
|
184
|
+
|
185
|
+
train_data_dir,
|
186
|
+
|
187
|
+
target_size=(img_w,img_h),
|
188
|
+
|
189
|
+
batch_size=batch_size,
|
190
|
+
|
191
|
+
class_mode=None,
|
192
|
+
|
193
|
+
shuffle=False)
|
194
|
+
|
195
|
+
|
196
|
+
|
197
|
+
print('train-label:',train_generator.class_indices)
|
198
|
+
|
199
|
+
|
200
|
+
|
201
|
+
vgg16_train=model.predict_generator(
|
202
|
+
|
203
|
+
train_generator,
|
204
|
+
|
205
|
+
verbose=1)
|
206
|
+
|
207
|
+
|
208
|
+
|
209
|
+
np.save(os.path.join(result_dir,'vgg16_train.npy'),vgg16_train)
|
210
|
+
|
211
|
+
|
212
|
+
|
213
|
+
validation_generator=datagen.flow_from_directory(
|
214
|
+
|
215
|
+
validation_data_dir,
|
216
|
+
|
217
|
+
target_size=(img_w,img_h),
|
218
|
+
|
219
|
+
batch_size=batch_size,
|
220
|
+
|
221
|
+
class_mode=None,
|
222
|
+
|
223
|
+
shuffle=False)
|
224
|
+
|
225
|
+
|
226
|
+
|
227
|
+
print('test-label:',validation_generator.class_indices)
|
228
|
+
|
229
|
+
|
230
|
+
|
231
|
+
vgg16_test=model.predict(
|
232
|
+
|
233
|
+
validation_generator,
|
234
|
+
|
235
|
+
verbose=1)
|
236
|
+
|
237
|
+
|
238
|
+
|
239
|
+
np.save(os.path.join(result_dir,'vgg16_test.npy'),vgg16_test)
|
240
|
+
|
241
|
+
|
242
|
+
|
243
|
+
save_VGG16_outputs()
|
244
|
+
|
245
|
+
|
246
|
+
|
247
|
+
import os
|
248
|
+
|
249
|
+
import numpy as np
|
250
|
+
|
251
|
+
from keras.models import Sequential
|
252
|
+
|
253
|
+
from keras import optimizers
|
254
|
+
|
255
|
+
from keras.layers import Activation,Dropout,Flatten,Dense
|
256
|
+
|
257
|
+
|
258
|
+
|
259
|
+
def train_FClayer():
|
260
|
+
|
261
|
+
|
262
|
+
|
263
|
+
train_data=np.load(
|
264
|
+
|
265
|
+
os.path.join(result_dir,'vgg16_train.npy'))
|
266
|
+
|
267
|
+
|
268
|
+
|
269
|
+
print(train_data.shape)
|
270
|
+
|
271
|
+
|
272
|
+
|
273
|
+
train_labels=np.array(
|
274
|
+
|
275
|
+
[0]*int(num_train/2)+[1]*int(num_train/2))
|
276
|
+
|
277
|
+
|
278
|
+
|
279
|
+
validation_data=np.load(
|
280
|
+
|
281
|
+
os.path.join(result_dir,'vgg16_test.npy'))
|
282
|
+
|
283
|
+
|
284
|
+
|
285
|
+
print(validation_data.shape)
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
validation_labels=np.array(
|
290
|
+
|
291
|
+
[0]*int(num_validation/2)+[1]*int(num_validation/2))
|
292
|
+
|
293
|
+
|
294
|
+
|
295
|
+
model=Sequential()
|
296
|
+
|
297
|
+
|
298
|
+
|
299
|
+
model.add(Flatten(input_shape=train_data.shape[1:]))
|
300
|
+
|
301
|
+
|
302
|
+
|
303
|
+
model.add(Dense(256,activation='relu'))
|
304
|
+
|
305
|
+
|
306
|
+
|
307
|
+
model.add(Dense(1,activation='sigmoid'))
|
308
|
+
|
309
|
+
|
310
|
+
|
311
|
+
model.compile(
|
312
|
+
|
313
|
+
loss='binary_crossentropy',
|
314
|
+
|
315
|
+
metrics=['accuracy'],
|
316
|
+
|
317
|
+
optimizer=optimizers.SGD(lr=1e-4,momentum=0.9),)
|
318
|
+
|
319
|
+
|
320
|
+
|
321
|
+
epoch=60
|
322
|
+
|
323
|
+
batch_size=32
|
324
|
+
|
325
|
+
history=model.fit(train_data,
|
326
|
+
|
327
|
+
train_labels,
|
328
|
+
|
329
|
+
epochs=epoch,
|
330
|
+
|
331
|
+
batch_size=batch_size,
|
332
|
+
|
333
|
+
verbose=1,
|
334
|
+
|
335
|
+
validation_data=(validation_data,validation_labels))
|
336
|
+
|
337
|
+
with open('model.json','w') as json_file:
|
338
|
+
|
339
|
+
json_file.write(model.to_json())
|
340
|
+
|
341
|
+
model.save('model_and_weight.h5')
|
342
|
+
|
343
|
+
|
344
|
+
|
345
|
+
return history
|
346
|
+
|
347
|
+
|
348
|
+
|
349
|
+
history=train_FClayer()
|
128
350
|
|
129
351
|
```
|
130
352
|
|
353
|
+
|
354
|
+
|
131
|
-
|
355
|
+
画像の処理コード
|
132
356
|
|
133
357
|
```python
|
134
358
|
|
135
|
-
|
359
|
+
from keras.applications.vgg16 import VGG16
|
360
|
+
|
361
|
+
from keras.preprocessing.image import ImageDataGenerator
|
362
|
+
|
363
|
+
from keras.layers import Input
|
364
|
+
|
365
|
+
import numpy as np
|
366
|
+
|
367
|
+
import os
|
368
|
+
|
369
|
+
|
370
|
+
|
371
|
+
num_eva =1
|
372
|
+
|
373
|
+
img_h,img_w=150,150
|
374
|
+
|
375
|
+
channels=3
|
376
|
+
|
377
|
+
batch_size=32
|
378
|
+
|
379
|
+
eva_data_dir='data/evaluation'
|
380
|
+
|
381
|
+
result_dir='results'
|
382
|
+
|
383
|
+
|
384
|
+
|
385
|
+
if not os.path.exists(result_dir):
|
386
|
+
|
387
|
+
os.mkdir(result_dir)
|
388
|
+
|
389
|
+
|
390
|
+
|
391
|
+
def save_VGG16_outputs():
|
392
|
+
|
393
|
+
model=VGG16(
|
394
|
+
|
395
|
+
include_top=False,
|
396
|
+
|
397
|
+
weights='imagenet',
|
398
|
+
|
399
|
+
input_shape=(img_h,img_w,channels))
|
400
|
+
|
401
|
+
|
402
|
+
|
403
|
+
model.summary()
|
404
|
+
|
405
|
+
|
406
|
+
|
407
|
+
datagen=ImageDataGenerator(rescale=1.0/255)
|
408
|
+
|
409
|
+
|
410
|
+
|
411
|
+
eva_generator=datagen.flow_from_directory(
|
412
|
+
|
413
|
+
eva_data_dir,
|
414
|
+
|
415
|
+
target_size=(img_w,img_h),
|
416
|
+
|
417
|
+
batch_size=batch_size,
|
418
|
+
|
419
|
+
class_mode=None,
|
420
|
+
|
421
|
+
shuffle=False)
|
422
|
+
|
423
|
+
|
424
|
+
|
425
|
+
print('eva-label:',eva_generator.class_indices)
|
426
|
+
|
427
|
+
|
428
|
+
|
429
|
+
vgg16_eva=model.predict_generator(
|
430
|
+
|
431
|
+
eva_generator,
|
432
|
+
|
433
|
+
verbose=1)
|
434
|
+
|
435
|
+
|
436
|
+
|
437
|
+
np.save(os.path.join(result_dir,'vgg16_eva.npy'),vgg16_eva)
|
438
|
+
|
439
|
+
|
440
|
+
|
441
|
+
print(vgg16_eva.shape)
|
442
|
+
|
443
|
+
|
444
|
+
|
445
|
+
save_VGG16_outputs()
|
446
|
+
|
447
|
+
|
448
|
+
|
449
|
+
Model: "vgg16"
|
450
|
+
|
451
|
+
_________________________________________________________________
|
452
|
+
|
453
|
+
Layer (type) Output Shape Param #
|
454
|
+
|
455
|
+
=================================================================
|
456
|
+
|
457
|
+
input_2 (InputLayer) [(None, 150, 150, 3)] 0
|
458
|
+
|
459
|
+
_________________________________________________________________
|
460
|
+
|
461
|
+
block1_conv1 (Conv2D) (None, 150, 150, 64) 1792
|
462
|
+
|
463
|
+
_________________________________________________________________
|
464
|
+
|
465
|
+
block1_conv2 (Conv2D) (None, 150, 150, 64) 36928
|
466
|
+
|
467
|
+
_________________________________________________________________
|
468
|
+
|
469
|
+
block1_pool (MaxPooling2D) (None, 75, 75, 64) 0
|
470
|
+
|
471
|
+
_________________________________________________________________
|
472
|
+
|
473
|
+
block2_conv1 (Conv2D) (None, 75, 75, 128) 73856
|
474
|
+
|
475
|
+
_________________________________________________________________
|
476
|
+
|
477
|
+
block2_conv2 (Conv2D) (None, 75, 75, 128) 147584
|
478
|
+
|
479
|
+
_________________________________________________________________
|
480
|
+
|
481
|
+
block2_pool (MaxPooling2D) (None, 37, 37, 128) 0
|
482
|
+
|
483
|
+
_________________________________________________________________
|
484
|
+
|
485
|
+
block3_conv1 (Conv2D) (None, 37, 37, 256) 295168
|
486
|
+
|
487
|
+
_________________________________________________________________
|
488
|
+
|
489
|
+
block3_conv2 (Conv2D) (None, 37, 37, 256) 590080
|
490
|
+
|
491
|
+
_________________________________________________________________
|
492
|
+
|
493
|
+
block3_conv3 (Conv2D) (None, 37, 37, 256) 590080
|
494
|
+
|
495
|
+
_________________________________________________________________
|
496
|
+
|
497
|
+
block3_pool (MaxPooling2D) (None, 18, 18, 256) 0
|
498
|
+
|
499
|
+
_________________________________________________________________
|
500
|
+
|
501
|
+
block4_conv1 (Conv2D) (None, 18, 18, 512) 1180160
|
502
|
+
|
503
|
+
_________________________________________________________________
|
504
|
+
|
505
|
+
block4_conv2 (Conv2D) (None, 18, 18, 512) 2359808
|
506
|
+
|
507
|
+
_________________________________________________________________
|
508
|
+
|
509
|
+
block4_conv3 (Conv2D) (None, 18, 18, 512) 2359808
|
510
|
+
|
511
|
+
_________________________________________________________________
|
512
|
+
|
513
|
+
block4_pool (MaxPooling2D) (None, 9, 9, 512) 0
|
514
|
+
|
515
|
+
_________________________________________________________________
|
516
|
+
|
517
|
+
block5_conv1 (Conv2D) (None, 9, 9, 512) 2359808
|
518
|
+
|
519
|
+
_________________________________________________________________
|
520
|
+
|
521
|
+
block5_conv2 (Conv2D) (None, 9, 9, 512) 2359808
|
522
|
+
|
523
|
+
_________________________________________________________________
|
524
|
+
|
525
|
+
block5_conv3 (Conv2D) (None, 9, 9, 512) 2359808
|
526
|
+
|
527
|
+
_________________________________________________________________
|
528
|
+
|
529
|
+
block5_pool (MaxPooling2D) (None, 4, 4, 512) 0
|
530
|
+
|
531
|
+
=================================================================
|
532
|
+
|
533
|
+
Total params: 14,714,688
|
534
|
+
|
535
|
+
Trainable params: 14,714,688
|
536
|
+
|
537
|
+
Non-trainable params: 0
|
538
|
+
|
539
|
+
_________________________________________________________________
|
540
|
+
|
541
|
+
Found 1 images belonging to 1 classes.
|
542
|
+
|
543
|
+
eva-label: {'1': 0}
|
544
|
+
|
545
|
+
1/1 [==============================] - 2s 2s/step
|
546
|
+
|
547
|
+
(1, 4, 4, 512)
|
136
548
|
|
137
549
|
```
|
138
|
-
|
139
|
-
学習済みファイルの作成コード
|
140
|
-
|
141
|
-
```python
|
142
|
-
|
143
|
-
from keras.applications.vgg16 import VGG16
|
144
|
-
|
145
|
-
from keras.preprocessing.image import ImageDataGenerator
|
146
|
-
|
147
|
-
from keras.layers import Input
|
148
|
-
|
149
|
-
import numpy as np
|
150
|
-
|
151
|
-
import os
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
num_train =2000
|
156
|
-
|
157
|
-
num_validation=800
|
158
|
-
|
159
|
-
img_h,img_w=150,150
|
160
|
-
|
161
|
-
channels=3
|
162
|
-
|
163
|
-
batch_size=32
|
164
|
-
|
165
|
-
train_data_dir='data/train'
|
166
|
-
|
167
|
-
validation_data_dir='data/validation'
|
168
|
-
|
169
|
-
result_dir='results'
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
if not os.path.exists(result_dir):
|
174
|
-
|
175
|
-
os.mkdir(result_dir)
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
def save_VGG16_outputs():
|
180
|
-
|
181
|
-
model=VGG16(
|
182
|
-
|
183
|
-
include_top=False,
|
184
|
-
|
185
|
-
weights='imagenet',
|
186
|
-
|
187
|
-
input_shape=(img_h,img_w,channels))
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
model.summary()
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
datagen=ImageDataGenerator(rescale=1.0/255)
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
train_generator=datagen.flow_from_directory(
|
200
|
-
|
201
|
-
train_data_dir,
|
202
|
-
|
203
|
-
target_size=(img_w,img_h),
|
204
|
-
|
205
|
-
batch_size=batch_size,
|
206
|
-
|
207
|
-
class_mode=None,
|
208
|
-
|
209
|
-
shuffle=False)
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
print('train-label:',train_generator.class_indices)
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
vgg16_train=model.predict_generator(
|
218
|
-
|
219
|
-
train_generator,
|
220
|
-
|
221
|
-
verbose=1)
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
np.save(os.path.join(result_dir,'vgg16_train.npy'),vgg16_train)
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
validation_generator=datagen.flow_from_directory(
|
230
|
-
|
231
|
-
validation_data_dir,
|
232
|
-
|
233
|
-
target_size=(img_w,img_h),
|
234
|
-
|
235
|
-
batch_size=batch_size,
|
236
|
-
|
237
|
-
class_mode=None,
|
238
|
-
|
239
|
-
shuffle=False)
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
print('test-label:',validation_generator.class_indices)
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
vgg16_test=model.predict(
|
248
|
-
|
249
|
-
validation_generator,
|
250
|
-
|
251
|
-
verbose=1)
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
np.save(os.path.join(result_dir,'vgg16_test.npy'),vgg16_test)
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
save_VGG16_outputs()
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
import os
|
264
|
-
|
265
|
-
import numpy as np
|
266
|
-
|
267
|
-
from keras.models import Sequential
|
268
|
-
|
269
|
-
from keras import optimizers
|
270
|
-
|
271
|
-
from keras.layers import Activation,Dropout,Flatten,Dense
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
def train_FClayer():
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
train_data=np.load(
|
280
|
-
|
281
|
-
os.path.join(result_dir,'vgg16_train.npy'))
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
print(train_data.shape)
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
train_labels=np.array(
|
290
|
-
|
291
|
-
[0]*int(num_train/2)+[1]*int(num_train/2))
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
validation_data=np.load(
|
296
|
-
|
297
|
-
os.path.join(result_dir,'vgg16_test.npy'))
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
print(validation_data.shape)
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
validation_labels=np.array(
|
306
|
-
|
307
|
-
[0]*int(num_validation/2)+[1]*int(num_validation/2))
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
model=Sequential()
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
model.add(Flatten(input_shape=train_data.shape[1:]))
|
316
|
-
|
317
|
-
|
318
|
-
|
319
|
-
model.add(Dense(256,activation='relu'))
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
model.add(Dense(1,activation='sigmoid'))
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
model.compile(
|
328
|
-
|
329
|
-
loss='binary_crossentropy',
|
330
|
-
|
331
|
-
metrics=['accuracy'],
|
332
|
-
|
333
|
-
optimizer=optimizers.SGD(lr=1e-4,momentum=0.9),)
|
334
|
-
|
335
|
-
|
336
|
-
|
337
|
-
epoch=60
|
338
|
-
|
339
|
-
batch_size=32
|
340
|
-
|
341
|
-
history=model.fit(train_data,
|
342
|
-
|
343
|
-
train_labels,
|
344
|
-
|
345
|
-
epochs=epoch,
|
346
|
-
|
347
|
-
batch_size=batch_size,
|
348
|
-
|
349
|
-
verbose=1,
|
350
|
-
|
351
|
-
validation_data=(validation_data,validation_labels))
|
352
|
-
|
353
|
-
with open('model.json','w') as json_file:
|
354
|
-
|
355
|
-
json_file.write(model.to_json())
|
356
|
-
|
357
|
-
model.save('model_and_weight.h5')
|
358
|
-
|
359
|
-
|
360
|
-
|
361
|
-
return history
|
362
|
-
|
363
|
-
|
364
|
-
|
365
|
-
history=train_FClayer()
|
366
|
-
|
367
|
-
```
|
3
指摘いただいた部分の修正箇所を反映
test
CHANGED
File without changes
|
test
CHANGED
@@ -92,6 +92,16 @@
|
|
92
92
|
|
93
93
|
```
|
94
94
|
|
95
|
+
指摘いただいた部分を修正
|
96
|
+
|
97
|
+
```python
|
98
|
+
|
99
|
+
imsize = (4, 4)
|
100
|
+
|
101
|
+
```
|
102
|
+
|
103
|
+
|
104
|
+
|
95
105
|
下記に記載したのがエラー内容
|
96
106
|
|
97
107
|
|
@@ -118,7 +128,13 @@
|
|
118
128
|
|
119
129
|
```
|
120
130
|
|
121
|
-
|
131
|
+
修正後のエラーコード
|
132
|
+
|
133
|
+
```python
|
134
|
+
|
135
|
+
WARNING:tensorflow:Model was constructed with shape (None, 4, 4, 512) for input KerasTensor(type_spec=TensorSpec(shape=(None, 4, 4, 512), dtype=tf.float32, name='flatten_input'), name='flatten_input', description="created by layer 'flatten_input'"), but it was called on an input with incompatible shape (None, 4, 4, 3).
|
136
|
+
|
137
|
+
```
|
122
138
|
|
123
139
|
学習済みファイルの作成コード
|
124
140
|
|
2
学習済みファイルの作成コードの掲載
test
CHANGED
File without changes
|
test
CHANGED
@@ -117,3 +117,235 @@
|
|
117
117
|
39 prelabel = np.argmax(prd, axis=1)
|
118
118
|
|
119
119
|
```
|
120
|
+
|
121
|
+
|
122
|
+
|
123
|
+
学習済みファイルの作成コード
|
124
|
+
|
125
|
+
```python
|
126
|
+
|
127
|
+
from keras.applications.vgg16 import VGG16
|
128
|
+
|
129
|
+
from keras.preprocessing.image import ImageDataGenerator
|
130
|
+
|
131
|
+
from keras.layers import Input
|
132
|
+
|
133
|
+
import numpy as np
|
134
|
+
|
135
|
+
import os
|
136
|
+
|
137
|
+
|
138
|
+
|
139
|
+
num_train =2000
|
140
|
+
|
141
|
+
num_validation=800
|
142
|
+
|
143
|
+
img_h,img_w=150,150
|
144
|
+
|
145
|
+
channels=3
|
146
|
+
|
147
|
+
batch_size=32
|
148
|
+
|
149
|
+
train_data_dir='data/train'
|
150
|
+
|
151
|
+
validation_data_dir='data/validation'
|
152
|
+
|
153
|
+
result_dir='results'
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
if not os.path.exists(result_dir):
|
158
|
+
|
159
|
+
os.mkdir(result_dir)
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
def save_VGG16_outputs():
|
164
|
+
|
165
|
+
model=VGG16(
|
166
|
+
|
167
|
+
include_top=False,
|
168
|
+
|
169
|
+
weights='imagenet',
|
170
|
+
|
171
|
+
input_shape=(img_h,img_w,channels))
|
172
|
+
|
173
|
+
|
174
|
+
|
175
|
+
model.summary()
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
datagen=ImageDataGenerator(rescale=1.0/255)
|
180
|
+
|
181
|
+
|
182
|
+
|
183
|
+
train_generator=datagen.flow_from_directory(
|
184
|
+
|
185
|
+
train_data_dir,
|
186
|
+
|
187
|
+
target_size=(img_w,img_h),
|
188
|
+
|
189
|
+
batch_size=batch_size,
|
190
|
+
|
191
|
+
class_mode=None,
|
192
|
+
|
193
|
+
shuffle=False)
|
194
|
+
|
195
|
+
|
196
|
+
|
197
|
+
print('train-label:',train_generator.class_indices)
|
198
|
+
|
199
|
+
|
200
|
+
|
201
|
+
vgg16_train=model.predict_generator(
|
202
|
+
|
203
|
+
train_generator,
|
204
|
+
|
205
|
+
verbose=1)
|
206
|
+
|
207
|
+
|
208
|
+
|
209
|
+
np.save(os.path.join(result_dir,'vgg16_train.npy'),vgg16_train)
|
210
|
+
|
211
|
+
|
212
|
+
|
213
|
+
validation_generator=datagen.flow_from_directory(
|
214
|
+
|
215
|
+
validation_data_dir,
|
216
|
+
|
217
|
+
target_size=(img_w,img_h),
|
218
|
+
|
219
|
+
batch_size=batch_size,
|
220
|
+
|
221
|
+
class_mode=None,
|
222
|
+
|
223
|
+
shuffle=False)
|
224
|
+
|
225
|
+
|
226
|
+
|
227
|
+
print('test-label:',validation_generator.class_indices)
|
228
|
+
|
229
|
+
|
230
|
+
|
231
|
+
vgg16_test=model.predict(
|
232
|
+
|
233
|
+
validation_generator,
|
234
|
+
|
235
|
+
verbose=1)
|
236
|
+
|
237
|
+
|
238
|
+
|
239
|
+
np.save(os.path.join(result_dir,'vgg16_test.npy'),vgg16_test)
|
240
|
+
|
241
|
+
|
242
|
+
|
243
|
+
save_VGG16_outputs()
|
244
|
+
|
245
|
+
|
246
|
+
|
247
|
+
import os
|
248
|
+
|
249
|
+
import numpy as np
|
250
|
+
|
251
|
+
from keras.models import Sequential
|
252
|
+
|
253
|
+
from keras import optimizers
|
254
|
+
|
255
|
+
from keras.layers import Activation,Dropout,Flatten,Dense
|
256
|
+
|
257
|
+
|
258
|
+
|
259
|
+
def train_FClayer():
|
260
|
+
|
261
|
+
|
262
|
+
|
263
|
+
train_data=np.load(
|
264
|
+
|
265
|
+
os.path.join(result_dir,'vgg16_train.npy'))
|
266
|
+
|
267
|
+
|
268
|
+
|
269
|
+
print(train_data.shape)
|
270
|
+
|
271
|
+
|
272
|
+
|
273
|
+
train_labels=np.array(
|
274
|
+
|
275
|
+
[0]*int(num_train/2)+[1]*int(num_train/2))
|
276
|
+
|
277
|
+
|
278
|
+
|
279
|
+
validation_data=np.load(
|
280
|
+
|
281
|
+
os.path.join(result_dir,'vgg16_test.npy'))
|
282
|
+
|
283
|
+
|
284
|
+
|
285
|
+
print(validation_data.shape)
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
validation_labels=np.array(
|
290
|
+
|
291
|
+
[0]*int(num_validation/2)+[1]*int(num_validation/2))
|
292
|
+
|
293
|
+
|
294
|
+
|
295
|
+
model=Sequential()
|
296
|
+
|
297
|
+
|
298
|
+
|
299
|
+
model.add(Flatten(input_shape=train_data.shape[1:]))
|
300
|
+
|
301
|
+
|
302
|
+
|
303
|
+
model.add(Dense(256,activation='relu'))
|
304
|
+
|
305
|
+
|
306
|
+
|
307
|
+
model.add(Dense(1,activation='sigmoid'))
|
308
|
+
|
309
|
+
|
310
|
+
|
311
|
+
model.compile(
|
312
|
+
|
313
|
+
loss='binary_crossentropy',
|
314
|
+
|
315
|
+
metrics=['accuracy'],
|
316
|
+
|
317
|
+
optimizer=optimizers.SGD(lr=1e-4,momentum=0.9),)
|
318
|
+
|
319
|
+
|
320
|
+
|
321
|
+
epoch=60
|
322
|
+
|
323
|
+
batch_size=32
|
324
|
+
|
325
|
+
history=model.fit(train_data,
|
326
|
+
|
327
|
+
train_labels,
|
328
|
+
|
329
|
+
epochs=epoch,
|
330
|
+
|
331
|
+
batch_size=batch_size,
|
332
|
+
|
333
|
+
verbose=1,
|
334
|
+
|
335
|
+
validation_data=(validation_data,validation_labels))
|
336
|
+
|
337
|
+
with open('model.json','w') as json_file:
|
338
|
+
|
339
|
+
json_file.write(model.to_json())
|
340
|
+
|
341
|
+
model.save('model_and_weight.h5')
|
342
|
+
|
343
|
+
|
344
|
+
|
345
|
+
return history
|
346
|
+
|
347
|
+
|
348
|
+
|
349
|
+
history=train_FClayer()
|
350
|
+
|
351
|
+
```
|
1
説明文にコードのことを追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,6 +1,8 @@
|
|
1
1
|
下記のようなコードで画像分類器を作成したいと考えています。
|
2
2
|
|
3
3
|
しかし、エラーが発生してしまい実行できません。
|
4
|
+
|
5
|
+
コードは同じ本から採用しています。
|
4
6
|
|
5
7
|
解決方法がありましたら、教えていただけますでしょうか。
|
6
8
|
|