質問編集履歴
5
修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -40,7 +40,7 @@
|
|
40
40
|
|
41
41
|
inpHeight = 416
|
42
42
|
|
43
|
-
classesFile = "/realsense_yolo_v3_2d/coco.names"
|
43
|
+
classesFile = "/home/limlab/realsense_yolo_v3_2d/coco.names"
|
44
44
|
|
45
45
|
# Configure depth and color streams
|
46
46
|
|
@@ -68,6 +68,8 @@
|
|
68
68
|
|
69
69
|
self.j = 0
|
70
70
|
|
71
|
+
|
72
|
+
|
71
73
|
def getOutputsNames(self,net):
|
72
74
|
|
73
75
|
layersNames = net.getLayerNames()
|
@@ -76,170 +78,174 @@
|
|
76
78
|
|
77
79
|
#検出
|
78
80
|
|
79
|
-
def drawPredicted(self,classId, conf, left, top,
|
81
|
+
def drawPredicted(self,classId, conf, left, top,right, bottom, frame,x,y):
|
80
|
-
|
81
|
-
#cv2.rectangle(frame, (left,top), (right,bottom), (255,0,0),3)#囲み
|
82
|
-
|
83
|
-
#cv2.circle(frame,(x,y),radius=1,color=(0,255,0), thickness=5)#・
|
84
82
|
|
85
83
|
|
86
84
|
|
85
|
+
classes = None
|
86
|
+
|
87
|
+
with open(classesFile, "rt") as f:
|
88
|
+
|
89
|
+
classes = f.read().rstrip('\n').split('\n')
|
90
|
+
|
91
|
+
cv2.rectangle(frame, (left,top), (right,bottom), (255,0,0),3)#囲み
|
92
|
+
|
93
|
+
cv2.circle(frame,(x,y),radius=1,color=(0,255,0), thickness=5)#・
|
94
|
+
|
95
|
+
|
96
|
+
|
87
97
|
label = '%.2f' % conf
|
88
98
|
|
99
|
+
if classes:
|
100
|
+
|
101
|
+
assert(classId < len(classes))
|
102
|
+
|
103
|
+
label = '%s' %(classes[classId])
|
104
|
+
|
105
|
+
cv2.putText(frame, label,(left,top-5), cv2.FONT_HERSHEY_SIMPLEX,0.75,(255,255,0),2)
|
106
|
+
|
107
|
+
global first#グローバル変数firstを定義
|
108
|
+
|
109
|
+
first = True #実行一回目がTrueの場合
|
110
|
+
|
111
|
+
|
112
|
+
|
113
|
+
if first == True:
|
114
|
+
|
115
|
+
path = '/home/limlab/realsense_yolo_v3_2d/image/'
|
116
|
+
|
117
|
+
if label == 'bottle':
|
118
|
+
|
119
|
+
#labelがbottleの場合
|
120
|
+
|
121
|
+
self.j += 1
|
122
|
+
|
123
|
+
if self.j == 1:#def__init__()で0と定義している、0の場合実行
|
124
|
+
|
125
|
+
cv2.imwrite(path + 'image1.png',frame)
|
126
|
+
|
127
|
+
print('ペットボトルを検出しました')
|
128
|
+
|
129
|
+
playsound("/home/limlab/programs/bottle.mp3")
|
130
|
+
|
131
|
+
self.j += 1#iの変数が1になる
|
132
|
+
|
133
|
+
sys.exit()
|
134
|
+
|
135
|
+
if label == 'mouse':
|
136
|
+
|
137
|
+
self.j += 1
|
138
|
+
|
139
|
+
if self.j == 1:
|
140
|
+
|
141
|
+
cv2.imwrite(path + 'image1.png',frame)
|
142
|
+
|
143
|
+
print('マウスを検出しました')
|
144
|
+
|
145
|
+
playsound("/home/limlab/programs/mouse.mp3")
|
146
|
+
|
147
|
+
self.j += 1
|
148
|
+
|
149
|
+
sys.exit()
|
150
|
+
|
151
|
+
|
152
|
+
|
153
|
+
labelSize= cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
154
|
+
|
155
|
+
top = max(top, labelSize[1])
|
156
|
+
|
157
|
+
cv2.putText(frame, label,(left,top-5), cv2.FONT_HERSHEY_SIMPLEX,0.75,(0,255,0),2)
|
158
|
+
|
159
|
+
|
160
|
+
|
89
161
|
|
90
162
|
|
163
|
+
|
164
|
+
|
165
|
+
|
166
|
+
|
167
|
+
def process_detection(self,frame, outs):
|
168
|
+
|
169
|
+
frameHeight = frame.shape[0]
|
170
|
+
|
171
|
+
frameWidth = frame.shape[1]
|
172
|
+
|
173
|
+
classIds = []
|
174
|
+
|
175
|
+
confidences = []
|
176
|
+
|
177
|
+
boxes = []
|
178
|
+
|
179
|
+
for out in outs:
|
180
|
+
|
181
|
+
for detection in out:
|
182
|
+
|
183
|
+
scores = detection[5:]
|
184
|
+
|
185
|
+
classId = np.argmax(scores)
|
186
|
+
|
187
|
+
confidence = scores[classId]
|
188
|
+
|
189
|
+
if confidence > confThreshold:
|
190
|
+
|
191
|
+
center_x = int(detection[0]*frameWidth)
|
192
|
+
|
193
|
+
center_y = int(detection[1]*frameHeight)
|
194
|
+
|
195
|
+
width = int(detection[2]*frameWidth)
|
196
|
+
|
197
|
+
height = int(detection[3]*frameHeight)
|
198
|
+
|
199
|
+
left = int(center_x - width/2)
|
200
|
+
|
201
|
+
top = int(center_y - height/2)
|
202
|
+
|
203
|
+
classIds.append(classId)
|
204
|
+
|
205
|
+
indices = cv2.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
|
206
|
+
|
207
|
+
for i in indices:
|
208
|
+
|
209
|
+
i = i[0]
|
210
|
+
|
211
|
+
box = boxes[i]
|
212
|
+
|
213
|
+
left = box[0]
|
214
|
+
|
215
|
+
top = box[1]
|
216
|
+
|
217
|
+
width = box[2]
|
218
|
+
|
219
|
+
height = box[3]
|
220
|
+
|
221
|
+
x = int(left+width/2)
|
222
|
+
|
223
|
+
y = int(top+ height/2)
|
224
|
+
|
225
|
+
self.drawPredicted(classIds[i], confidences[i], left, top,left+width,top+height,frame,x,y)
|
226
|
+
|
227
|
+
|
228
|
+
|
91
|
-
|
229
|
+
def main():
|
230
|
+
|
92
|
-
|
231
|
+
cam = CAMDEMO()
|
232
|
+
|
233
|
+
modelConfiguration = "/home/limlab/realsense_yolo_v3_2d/yolov3.cfg"
|
234
|
+
|
235
|
+
modelWeights = "/home/limlab/realsense_yolo_v3_2d/yolov3.weights"
|
236
|
+
|
93
|
-
|
237
|
+
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
|
94
|
-
|
95
|
-
|
96
|
-
|
238
|
+
|
97
|
-
|
239
|
+
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
|
240
|
+
|
98
|
-
|
241
|
+
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
242
|
+
|
99
|
-
|
243
|
+
try:
|
100
|
-
|
244
|
+
|
101
|
-
|
245
|
+
while True:
|
102
246
|
|
103
247
|
|
104
248
|
|
105
|
-
if first == True:
|
106
|
-
|
107
|
-
path = '/realsense_yolo_v3_2d/image/'
|
108
|
-
|
109
|
-
if label == 'bottle':#labelがbottleの場合
|
110
|
-
|
111
|
-
self.j += 1
|
112
|
-
|
113
|
-
if self.j == 1:
|
114
|
-
|
115
|
-
cv2.imwrite(path + 'image1.png',frame)
|
116
|
-
|
117
|
-
print('ペットボトルを検出しました')
|
118
|
-
|
119
|
-
playsound("/programs/bottle.mp3")
|
120
|
-
|
121
|
-
self.j += 1
|
122
|
-
|
123
|
-
sys.exit()
|
124
|
-
|
125
|
-
if label == 'mouse':
|
126
|
-
|
127
|
-
self.j += 1
|
128
|
-
|
129
|
-
if self.j == 1:
|
130
|
-
|
131
|
-
cv2.imwrite(path + 'image1.png',frame)
|
132
|
-
|
133
|
-
print('マウスを検出しました')
|
134
|
-
|
135
|
-
playsound("/programs/mouse.mp3")
|
136
|
-
|
137
|
-
self.j += 1
|
138
|
-
|
139
|
-
sys.exit()
|
140
|
-
|
141
|
-
#labelSize= cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
142
|
-
|
143
|
-
#top = max(top, labelSize[1])
|
144
|
-
|
145
|
-
cv2.putText(frame, label,(left,top-5), cv2.FONT_HERSHEY_SIMPLEX,0.75,(0,255,0),2)
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
def process_detection(self,frame, outs):
|
156
|
-
|
157
|
-
frameHeight = frame.shape[0]
|
158
|
-
|
159
|
-
frameWidth = frame.shape[1]
|
160
|
-
|
161
|
-
classIds = []
|
162
|
-
|
163
|
-
confidences = []
|
164
|
-
|
165
|
-
boxes = []
|
166
|
-
|
167
|
-
for out in outs:
|
168
|
-
|
169
|
-
for detection in out:
|
170
|
-
|
171
|
-
scores = detection[5:]
|
172
|
-
|
173
|
-
classId = np.argmax(scores)
|
174
|
-
|
175
|
-
confidence = scores[classId]
|
176
|
-
|
177
|
-
if confidence > confThreshold:
|
178
|
-
|
179
|
-
center_x = int(detection[0]*frameWidth)
|
180
|
-
|
181
|
-
center_y = int(detection[1]*frameHeight)
|
182
|
-
|
183
|
-
width = int(detection[2]*frameWidth)
|
184
|
-
|
185
|
-
height = int(detection[3]*frameHeight)
|
186
|
-
|
187
|
-
left = int(center_x - width/2)
|
188
|
-
|
189
|
-
top = int(center_y - height/2)
|
190
|
-
|
191
|
-
classIds.append(classId)
|
192
|
-
|
193
|
-
indices = cv2.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
|
194
|
-
|
195
|
-
for i in indices:
|
196
|
-
|
197
|
-
i = i[0]
|
198
|
-
|
199
|
-
box = boxes[i]
|
200
|
-
|
201
|
-
left = box[0]
|
202
|
-
|
203
|
-
top = box[1]
|
204
|
-
|
205
|
-
width = box[2]
|
206
|
-
|
207
|
-
height = box[3]
|
208
|
-
|
209
|
-
x = int(left+width/2)
|
210
|
-
|
211
|
-
y = int(top+ height/2)
|
212
|
-
|
213
|
-
self.drawPredicted(classIds[i], confidences[i], left, top,frame,x,y)#5left+width, 6top+height
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
def main():
|
218
|
-
|
219
|
-
cam = CAMDEMO()
|
220
|
-
|
221
|
-
classes = None
|
222
|
-
|
223
|
-
with open(classesFile, "rt") as f:
|
224
|
-
|
225
|
-
classes = f.read().rstrip('\n').split('\n')
|
226
|
-
|
227
|
-
modelConfiguration = "/realsense_yolo_v3_2d/yolov3.cfg"
|
228
|
-
|
229
|
-
modelWeights = "/realsense_yolo_v3_2d/yolov3.weights"
|
230
|
-
|
231
|
-
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
|
232
|
-
|
233
|
-
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
|
234
|
-
|
235
|
-
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
236
|
-
|
237
|
-
try:
|
238
|
-
|
239
|
-
while True:
|
240
|
-
|
241
|
-
|
242
|
-
|
243
249
|
# Wait for a coherent pair of frames: depth and color
|
244
250
|
|
245
251
|
frames = pipeline.wait_for_frames()
|
@@ -288,4 +294,6 @@
|
|
288
294
|
|
289
295
|
|
290
296
|
|
297
|
+
|
298
|
+
|
291
299
|
```
|
4
修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -40,7 +40,7 @@
|
|
40
40
|
|
41
41
|
inpHeight = 416
|
42
42
|
|
43
|
-
classesFile = "/
|
43
|
+
classesFile = "/realsense_yolo_v3_2d/coco.names"
|
44
44
|
|
45
45
|
# Configure depth and color streams
|
46
46
|
|
@@ -224,9 +224,9 @@
|
|
224
224
|
|
225
225
|
classes = f.read().rstrip('\n').split('\n')
|
226
226
|
|
227
|
-
modelConfiguration = "/
|
227
|
+
modelConfiguration = "/realsense_yolo_v3_2d/yolov3.cfg"
|
228
|
-
|
228
|
+
|
229
|
-
modelWeights = "/
|
229
|
+
modelWeights = "/realsense_yolo_v3_2d/yolov3.weights"
|
230
230
|
|
231
231
|
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
|
232
232
|
|
3
修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -92,9 +92,7 @@
|
|
92
92
|
|
93
93
|
label = '%s' %(classes[classId])
|
94
94
|
|
95
|
-
|
95
|
+
|
96
|
-
|
97
|
-
top = max(top, labelSize[1])
|
98
96
|
|
99
97
|
cv2.putText(frame, label,(left,top-5), cv2.FONT_HERSHEY_SIMPLEX,0.75,(255,255,0),2)
|
100
98
|
|
2
修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -76,7 +76,7 @@
|
|
76
76
|
|
77
77
|
#検出
|
78
78
|
|
79
|
-
def drawPredicted(self,classId, conf, left, top, frame
|
79
|
+
def drawPredicted(self,classId, conf, left, top, frame):#right, bottom,x ,y
|
80
80
|
|
81
81
|
#cv2.rectangle(frame, (left,top), (right,bottom), (255,0,0),3)#囲み
|
82
82
|
|
1
修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -18,13 +18,55 @@
|
|
18
18
|
|
19
19
|
```ここに言語名を入力
|
20
20
|
|
21
|
+
import pyrealsense2 as rs
|
22
|
+
|
23
|
+
import numpy as np
|
24
|
+
|
25
|
+
import cv2
|
26
|
+
|
27
|
+
import sys
|
28
|
+
|
29
|
+
from playsound import playsound
|
30
|
+
|
31
|
+
|
32
|
+
|
33
|
+
# Initialize the parameters
|
34
|
+
|
35
|
+
confThreshold = 0.5
|
36
|
+
|
37
|
+
nmsThreshold = 0.4
|
38
|
+
|
39
|
+
inpWidth = 416
|
40
|
+
|
41
|
+
inpHeight = 416
|
42
|
+
|
21
|
-
classesFile = "/realsense_yolo_v3_2d/coco.names"
|
43
|
+
classesFile = "/home/limlab/realsense_yolo_v3_2d/coco.names"
|
44
|
+
|
45
|
+
# Configure depth and color streams
|
46
|
+
|
47
|
+
pipeline = rs.pipeline()
|
48
|
+
|
49
|
+
config = rs.config()
|
50
|
+
|
51
|
+
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
|
52
|
+
|
53
|
+
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
|
54
|
+
|
55
|
+
# Start streaming
|
56
|
+
|
57
|
+
pipeline.start(config)
|
58
|
+
|
59
|
+
|
60
|
+
|
61
|
+
|
22
62
|
|
23
63
|
class CAMDEMO:
|
24
64
|
|
25
65
|
|
26
66
|
|
27
|
-
|
67
|
+
def __init__ (self):
|
68
|
+
|
69
|
+
self.j = 0
|
28
70
|
|
29
71
|
def getOutputsNames(self,net):
|
30
72
|
|
@@ -32,9 +74,13 @@
|
|
32
74
|
|
33
75
|
return [layersNames[i[0] -1] for i in net.getUnconnectedOutLayers()]
|
34
76
|
|
35
|
-
|
77
|
+
#検出
|
36
|
-
|
78
|
+
|
37
|
-
def drawPredicted(self,classId, conf, left, top, frame):
|
79
|
+
def drawPredicted(self,classId, conf, left, top, frame,classes):#right, bottom,x ,y
|
80
|
+
|
81
|
+
#cv2.rectangle(frame, (left,top), (right,bottom), (255,0,0),3)#囲み
|
82
|
+
|
83
|
+
#cv2.circle(frame,(x,y),radius=1,color=(0,255,0), thickness=5)#・
|
38
84
|
|
39
85
|
|
40
86
|
|
@@ -50,7 +96,123 @@
|
|
50
96
|
|
51
97
|
top = max(top, labelSize[1])
|
52
98
|
|
53
|
-
cv2.putText(frame, label,(left,top-5), cv2.FONT_HERSHEY_SIMPLEX,0.75,(255,255,0),2)
|
99
|
+
cv2.putText(frame, label,(left,top-5), cv2.FONT_HERSHEY_SIMPLEX,0.75,(255,255,0),2)
|
100
|
+
|
101
|
+
global first
|
102
|
+
|
103
|
+
first = True
|
104
|
+
|
105
|
+
|
106
|
+
|
107
|
+
if first == True:
|
108
|
+
|
109
|
+
path = '/realsense_yolo_v3_2d/image/'
|
110
|
+
|
111
|
+
if label == 'bottle':#labelがbottleの場合
|
112
|
+
|
113
|
+
self.j += 1
|
114
|
+
|
115
|
+
if self.j == 1:
|
116
|
+
|
117
|
+
cv2.imwrite(path + 'image1.png',frame)
|
118
|
+
|
119
|
+
print('ペットボトルを検出しました')
|
120
|
+
|
121
|
+
playsound("/programs/bottle.mp3")
|
122
|
+
|
123
|
+
self.j += 1
|
124
|
+
|
125
|
+
sys.exit()
|
126
|
+
|
127
|
+
if label == 'mouse':
|
128
|
+
|
129
|
+
self.j += 1
|
130
|
+
|
131
|
+
if self.j == 1:
|
132
|
+
|
133
|
+
cv2.imwrite(path + 'image1.png',frame)
|
134
|
+
|
135
|
+
print('マウスを検出しました')
|
136
|
+
|
137
|
+
playsound("/programs/mouse.mp3")
|
138
|
+
|
139
|
+
self.j += 1
|
140
|
+
|
141
|
+
sys.exit()
|
142
|
+
|
143
|
+
#labelSize= cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
144
|
+
|
145
|
+
#top = max(top, labelSize[1])
|
146
|
+
|
147
|
+
cv2.putText(frame, label,(left,top-5), cv2.FONT_HERSHEY_SIMPLEX,0.75,(0,255,0),2)
|
148
|
+
|
149
|
+
|
150
|
+
|
151
|
+
|
152
|
+
|
153
|
+
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
def process_detection(self,frame, outs):
|
158
|
+
|
159
|
+
frameHeight = frame.shape[0]
|
160
|
+
|
161
|
+
frameWidth = frame.shape[1]
|
162
|
+
|
163
|
+
classIds = []
|
164
|
+
|
165
|
+
confidences = []
|
166
|
+
|
167
|
+
boxes = []
|
168
|
+
|
169
|
+
for out in outs:
|
170
|
+
|
171
|
+
for detection in out:
|
172
|
+
|
173
|
+
scores = detection[5:]
|
174
|
+
|
175
|
+
classId = np.argmax(scores)
|
176
|
+
|
177
|
+
confidence = scores[classId]
|
178
|
+
|
179
|
+
if confidence > confThreshold:
|
180
|
+
|
181
|
+
center_x = int(detection[0]*frameWidth)
|
182
|
+
|
183
|
+
center_y = int(detection[1]*frameHeight)
|
184
|
+
|
185
|
+
width = int(detection[2]*frameWidth)
|
186
|
+
|
187
|
+
height = int(detection[3]*frameHeight)
|
188
|
+
|
189
|
+
left = int(center_x - width/2)
|
190
|
+
|
191
|
+
top = int(center_y - height/2)
|
192
|
+
|
193
|
+
classIds.append(classId)
|
194
|
+
|
195
|
+
indices = cv2.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
|
196
|
+
|
197
|
+
for i in indices:
|
198
|
+
|
199
|
+
i = i[0]
|
200
|
+
|
201
|
+
box = boxes[i]
|
202
|
+
|
203
|
+
left = box[0]
|
204
|
+
|
205
|
+
top = box[1]
|
206
|
+
|
207
|
+
width = box[2]
|
208
|
+
|
209
|
+
height = box[3]
|
210
|
+
|
211
|
+
x = int(left+width/2)
|
212
|
+
|
213
|
+
y = int(top+ height/2)
|
214
|
+
|
215
|
+
self.drawPredicted(classIds[i], confidences[i], left, top,frame,x,y)#5left+width, 6top+height
|
54
216
|
|
55
217
|
|
56
218
|
|
@@ -64,6 +226,68 @@
|
|
64
226
|
|
65
227
|
classes = f.read().rstrip('\n').split('\n')
|
66
228
|
|
229
|
+
modelConfiguration = "/home/limlab/realsense_yolo_v3_2d/yolov3.cfg"
|
230
|
+
|
231
|
+
modelWeights = "/home/limlab/realsense_yolo_v3_2d/yolov3.weights"
|
232
|
+
|
233
|
+
net = cv2.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
|
234
|
+
|
235
|
+
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
|
236
|
+
|
237
|
+
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
238
|
+
|
239
|
+
try:
|
240
|
+
|
241
|
+
while True:
|
242
|
+
|
243
|
+
|
244
|
+
|
245
|
+
# Wait for a coherent pair of frames: depth and color
|
246
|
+
|
247
|
+
frames = pipeline.wait_for_frames()
|
248
|
+
|
249
|
+
color_frame = frames.get_color_frame()
|
250
|
+
|
251
|
+
if not color_frame:
|
252
|
+
|
253
|
+
continue
|
254
|
+
|
255
|
+
# Convert images to numpy arrays
|
256
|
+
|
257
|
+
color_image = np.asanyarray(color_frame.get_data())
|
258
|
+
|
259
|
+
blob = cv2.dnn.blobFromImage(color_image, 1/255, (inpWidth, inpHeight), [0,0,0],1,crop=False)
|
260
|
+
|
261
|
+
net.setInput(blob)
|
262
|
+
|
263
|
+
outs = net.forward(cam.getOutputsNames(net))
|
264
|
+
|
265
|
+
# Apply colormap on depth image (image must be converted to 8-bit per pixel first)
|
266
|
+
|
267
|
+
cam.process_detection(color_image,outs)
|
268
|
+
|
269
|
+
images = color_image
|
270
|
+
|
271
|
+
# Show images
|
272
|
+
|
273
|
+
cv2.imshow('Yolo in RealSense made by Tony', images)
|
274
|
+
|
275
|
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
276
|
+
|
277
|
+
break
|
278
|
+
|
279
|
+
finally:
|
280
|
+
|
281
|
+
# Stop streaming
|
282
|
+
|
283
|
+
pipeline.stop()
|
284
|
+
|
285
|
+
|
286
|
+
|
287
|
+
if __name__ == "__main__":
|
288
|
+
|
289
|
+
main()
|
290
|
+
|
67
291
|
|
68
292
|
|
69
293
|
```
|