質問編集履歴
4
タブ修正
title
CHANGED
File without changes
|
body
CHANGED
File without changes
|
3
コード修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -38,7 +38,7 @@
|
|
38
38
|
model.summary()
|
39
39
|
Model: "sequential_6"
|
40
40
|
_________________________________________________________________
|
41
|
-
Layer (type) Output Shape Param
|
41
|
+
Layer (type) Output Shape Param
|
42
42
|
=================================================================
|
43
43
|
conv2d_9 (Conv2D) (None, 58, 62, 20) 520
|
44
44
|
_________________________________________________________________
|
2
コード修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -22,17 +22,14 @@
|
|
22
22
|
loss='categorical_crossentropy',
|
23
23
|
metrics=['accuracy'])
|
24
24
|
|
25
|
-
#ラベル生成
|
26
25
|
from sklearn.preprocessing import LabelEncoder
|
27
26
|
import numpy as np
|
28
27
|
code = np.array(labels['expression'])
|
29
28
|
label_encoder = LabelEncoder()
|
30
29
|
vec = label_encoder.fit_transform(code)
|
31
30
|
|
32
|
-
# ラベルデータをカテゴリの1-hotベクトルにエンコードする
|
33
31
|
one_hot_labels = keras.utils.to_categorical(vec, num_classes=10)
|
34
32
|
|
35
|
-
# 各イテレーションのバッチサイズを32で学習を行なう(fitでデータとラベルを一括で渡す)
|
36
33
|
model.fit(col, one_hot_labels, epochs=10, batch_size=32)
|
37
34
|
//////////////////////////////////////////////////////////
|
38
35
|
col.shape=(312,120,128)
|
1
コード修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -22,11 +22,6 @@
|
|
22
22
|
loss='categorical_crossentropy',
|
23
23
|
metrics=['accuracy'])
|
24
24
|
|
25
|
-
# ダミーデータ作成
|
26
|
-
#import numpy as np
|
27
|
-
#data = np.random.random((32, 100))
|
28
|
-
#labels = np.random.randint(4, size=(1000, 1))
|
29
|
-
|
30
25
|
#ラベル生成
|
31
26
|
from sklearn.preprocessing import LabelEncoder
|
32
27
|
import numpy as np
|