質問編集履歴
1
補足
test
CHANGED
File without changes
|
test
CHANGED
@@ -52,6 +52,86 @@
|
|
52
52
|
|
53
53
|
|
54
54
|
|
55
|
+
|
56
|
+
|
57
|
+
上記のリンクのコードと変更した箇所
|
58
|
+
|
59
|
+
```python
|
60
|
+
|
61
|
+
#accの箇所をaccuracyに変更
|
62
|
+
|
63
|
+
def plot_loss_accuracy_graph(fit_record):
|
64
|
+
|
65
|
+
# 青い線で誤差の履歴をプロットします、検証時誤差は黒い線で
|
66
|
+
|
67
|
+
plt.plot(fit_record.history['loss'], "-D", color="blue", label="train_loss", linewidth=2)
|
68
|
+
|
69
|
+
plt.plot(fit_record.history['val_loss'], "-D", color="black", label="val_loss", linewidth=2)
|
70
|
+
|
71
|
+
plt.title('LOSS')
|
72
|
+
|
73
|
+
plt.xlabel('Epochs')
|
74
|
+
|
75
|
+
plt.ylabel('Loss')
|
76
|
+
|
77
|
+
plt.legend(loc='upper right')
|
78
|
+
|
79
|
+
plt.show()
|
80
|
+
|
81
|
+
|
82
|
+
|
83
|
+
# 緑の線で精度の履歴をプロットします、検証時制度は黒い線で
|
84
|
+
|
85
|
+
plt.plot(fit_record.history['accuracy'],"-o", color="green", label="train_accuracy", linewidth=2)
|
86
|
+
|
87
|
+
plt.plot(fit_record.history['val_accuracy'],"-o",color="black", label="val_accuracy", linewidth=2)
|
88
|
+
|
89
|
+
plt.title('ACCURACY')
|
90
|
+
|
91
|
+
plt.xlabel('Epochs')
|
92
|
+
|
93
|
+
plt.ylabel('Accuracy')
|
94
|
+
|
95
|
+
plt.legend(loc="lower right")
|
96
|
+
|
97
|
+
plt.show()
|
98
|
+
|
99
|
+
```
|
100
|
+
|
101
|
+
```python
|
102
|
+
|
103
|
+
#keras.utils.to_categoricalの箇所をnp_utils.to_categoricalに変更
|
104
|
+
|
105
|
+
from keras.utils import np_utils
|
106
|
+
|
107
|
+
|
108
|
+
|
109
|
+
# 学習用教師ラベルデータをOne-hotベクトルに変換します
|
110
|
+
|
111
|
+
print('Keras変換前学習用教師ラベルデータ train_teacher_labels shape:', train_teacher_labels.shape)
|
112
|
+
|
113
|
+
train_teacher_labels= np_utils.to_categorical(train_teacher_labels, NUM_CLASSES)
|
114
|
+
|
115
|
+
print('Keras変換後学習用教師ラベルデータ train_teacher_labels shape:',train_teacher_labels.shape)
|
116
|
+
|
117
|
+
|
118
|
+
|
119
|
+
# 検証用教師ラベルデータをOne-hotベクトルに変換します
|
120
|
+
|
121
|
+
print('Keras変換前検証用教師ラベルデータ test_teacher_labels shape:', test_teacher_labels.shape)
|
122
|
+
|
123
|
+
print(test_teacher_labels)
|
124
|
+
|
125
|
+
test_teacher_labels = np_utils.to_categorical(test_teacher_labels, NUM_CLASSES)
|
126
|
+
|
127
|
+
print('Keras変換後検証用教師ラベルデータ test_teacher_labels shape:',test_teacher_labels.shape)
|
128
|
+
|
129
|
+
print(test_teacher_labels)
|
130
|
+
|
131
|
+
```
|
132
|
+
|
133
|
+
|
134
|
+
|
55
135
|
googlecolabの環境
|
56
136
|
|
57
137
|
keras2.5.0
|