質問編集履歴
3
訂正しましたすんまそん。
test
CHANGED
File without changes
|
test
CHANGED
@@ -66,13 +66,13 @@
|
|
66
66
|
|
67
67
|
|
68
68
|
|
69
|
-
plt.figure(figsize=(
|
69
|
+
plt.figure(figsize=(100,100))
|
70
70
|
|
71
71
|
|
72
72
|
|
73
73
|
for i in range(len(out_img)):
|
74
74
|
|
75
|
-
plt.subplot(
|
75
|
+
plt.subplot(20, 20, i+1).imshow(out_img[i])
|
76
76
|
|
77
77
|
|
78
78
|
|
@@ -118,11 +118,11 @@
|
|
118
118
|
|
119
119
|
|
120
120
|
|
121
|
-
out_data_list = [[]]
|
121
|
+
out_data_list = [[0]] * len(out_img)
|
122
|
-
|
122
|
+
|
123
|
-
for i in range(len(out_
|
123
|
+
for i in range(len(out_img)):
|
124
|
-
|
124
|
+
|
125
|
-
out_data_list[i].append(
|
125
|
+
out_data_list[i].append(diff(extract(out_img[i], 1)) + diff(extract(out_img[i], 2)) + diff(extract(out_img[i], 0)))
|
126
126
|
|
127
127
|
|
128
128
|
|
@@ -146,19 +146,23 @@
|
|
146
146
|
|
147
147
|
print("training_data_list[1:]" ,training_data_list[1:])
|
148
148
|
|
149
|
-
print(len(training_data_list))
|
149
|
+
print("len(training_data_list)" ,len(training_data_list))
|
150
|
-
|
151
|
-
|
150
|
+
|
152
|
-
|
153
|
-
print(len(out_data_list[0][0]))
|
151
|
+
print("len(out_data_list[0])" ,len(out_data_list[0]))
|
154
|
-
|
152
|
+
|
155
|
-
print(out_data_list[0][0])
|
153
|
+
print("out_data_list[0][0]" ,out_data_list[0][0])
|
156
|
-
|
154
|
+
|
157
|
-
print(l
|
155
|
+
print("out_data_list[1][0]" ,out_data_list[1][0])
|
156
|
+
|
158
|
-
|
157
|
+
print("out_data_list[2][0]" ,out_data_list[2][0])
|
158
|
+
|
159
|
+
print("out_data_list[0][1]" ,out_data_list[0][1])
|
160
|
+
|
161
|
+
print("out_data_list[1][1]" ,out_data_list[1][1])
|
162
|
+
|
159
|
-
print(len(out_data_list[
|
163
|
+
print("len(out_data_list[1:])" ,len(out_data_list[1:]))
|
160
|
-
|
164
|
+
|
161
|
-
print(out_data_list[0][1:])
|
165
|
+
print("out_data_list[0][1:]" ,out_data_list[0][1:])
|
162
166
|
|
163
167
|
|
164
168
|
|
@@ -348,8 +352,6 @@
|
|
348
352
|
|
349
353
|
plabel = np.argmax(predict)
|
350
354
|
|
351
|
-
print("predict" ,predict)
|
352
|
-
|
353
355
|
print("plabel" ,plabel)
|
354
356
|
|
355
357
|
pass
|
@@ -366,44 +368,62 @@
|
|
366
368
|
|
367
369
|
```出力結果
|
368
370
|
|
369
|
-
|
371
|
+
Mounted at /content/drive
|
370
372
|
|
371
373
|
len(out_img) 400
|
372
374
|
|
373
|
-
training_data_list [[0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
375
|
+
training_data_list [[0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
374
376
|
|
375
377
|
中略
|
376
378
|
|
377
|
-
, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [399, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]]
|
378
|
-
|
379
|
-
400
|
380
|
-
|
381
|
-
1
|
382
|
-
|
383
|
-
|
384
|
-
|
385
|
-
[0
|
386
|
-
|
387
|
-
0
|
388
|
-
|
389
|
-
|
390
|
-
|
391
|
-
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
|
396
|
-
|
397
|
-
|
398
|
-
|
399
|
-
|
400
|
-
|
401
|
-
|
402
|
-
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
|
379
|
+
[394, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [395, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [396, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [397, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [398, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [399, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]]
|
380
|
+
|
381
|
+
len(training_data_list) 400
|
382
|
+
|
383
|
+
len(out_data_list[0]) 401
|
384
|
+
|
385
|
+
out_data_list[0][0] 0
|
386
|
+
|
387
|
+
out_data_list[1][0] 0
|
388
|
+
|
389
|
+
out_data_list[2][0] 0
|
390
|
+
|
391
|
+
out_data_list[0][1] [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
392
|
+
|
393
|
+
out_data_list[1][1] [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
394
|
+
|
395
|
+
len(out_data_list[1:]) 399
|
396
|
+
|
397
|
+
out_data_list[0][1:] [[5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
398
|
+
|
399
|
+
中略
|
400
|
+
|
401
|
+
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]]
|
402
|
+
|
403
|
+
#epoch 0
|
404
|
+
|
405
|
+
train: 0 / 400
|
406
|
+
|
407
|
+
中略
|
408
|
+
|
409
|
+
#epoch 49
|
410
|
+
|
411
|
+
train: 0 / 400
|
412
|
+
|
413
|
+
plabel 148800
|
414
|
+
|
415
|
+
中略
|
416
|
+
|
417
|
+
plabel 148800
|
418
|
+
|
419
|
+
|
420
|
+
|
421
|
+
performance: nan
|
422
|
+
|
423
|
+
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:178: RuntimeWarning: invalid value encountered in double_scalars
|
408
424
|
|
409
425
|
```
|
426
|
+
|
427
|
+
|
428
|
+
|
429
|
+
何がおかしいかというと、plavelが全て14880なんです、全て同じというのは、同じことの繰り返しになっているわけではないんでしょうか、いずれにせよ、これではプログラムの意味がない・・・。
|
2
全体を編集しました、回答を受けて。
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,3 +1,9 @@
|
|
1
|
+
ちょっと色々間違えていたので、回答を元に全体を編集しました、
|
2
|
+
|
3
|
+
しかしどう直せば良いのかいまだに分からずじまいです。
|
4
|
+
|
5
|
+
|
6
|
+
|
1
7
|
```python
|
2
8
|
|
3
9
|
from google.colab import drive
|
@@ -36,6 +42,10 @@
|
|
36
42
|
|
37
43
|
|
38
44
|
|
45
|
+
plt.imshow(img)
|
46
|
+
|
47
|
+
|
48
|
+
|
39
49
|
size = 5
|
40
50
|
|
41
51
|
|
@@ -52,25 +62,17 @@
|
|
52
62
|
|
53
63
|
|
54
64
|
|
65
|
+
print("len(out_img)" ,len(out_img))
|
66
|
+
|
67
|
+
|
68
|
+
|
69
|
+
plt.figure(figsize=(400,400))
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
for i in range(len(out_img)):
|
74
|
+
|
55
|
-
plt.subplot(17, 6, 1).imshow(out_img[
|
75
|
+
plt.subplot(17, 60, i+1).imshow(out_img[i])
|
56
|
-
|
57
|
-
plt.subplot(17, 6, 2).imshow(out_img[2])
|
58
|
-
|
59
|
-
plt.subplot(17, 6, 3).imshow(out_img[3])
|
60
|
-
|
61
|
-
plt.subplot(17, 6, 4).imshow(out_img[4])
|
62
|
-
|
63
|
-
plt.subplot(17, 6, 5).imshow(out_img[5])
|
64
|
-
|
65
|
-
plt.subplot(17, 6, 6).imshow(out_img[6])
|
66
|
-
|
67
|
-
plt.subplot(17, 6, 7).imshow(out_img[7])
|
68
|
-
|
69
|
-
plt.subplot(17, 6, 8).imshow(out_img[8])
|
70
|
-
|
71
|
-
plt.subplot(17, 6, 9).imshow(out_img[9])
|
72
|
-
|
73
|
-
plt.subplot(17, 6, 10).imshow(out_img[10])
|
74
76
|
|
75
77
|
|
76
78
|
|
@@ -116,79 +118,11 @@
|
|
116
118
|
|
117
119
|
|
118
120
|
|
119
|
-
|
121
|
+
out_data_list = [[]]
|
120
|
-
|
121
|
-
|
122
|
-
|
122
|
+
|
123
|
-
out_data_list
|
123
|
+
for i in range(len(out_data_list)):
|
124
|
-
|
125
|
-
|
126
|
-
|
124
|
+
|
127
|
-
out_data_list[
|
125
|
+
out_data_list[i].append([0] + diff(extract(out_img[i], 1)) + diff(extract(out_img[i], 2)) + diff(extract(out_img[i], 0)))
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
out_data_list[1].append([0] + diff(extract(out_img[1], 1)) + diff(extract(out_img[1], 2)) + diff(extract(out_img[1], 0)))
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
out_data_list[2].append([0] + diff(extract(out_img[2], 1)) + diff(extract(out_img[2], 2)) + diff(extract(out_img[2], 0)))
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
out_data_list[3].append([0] + diff(extract(out_img[3], 1)) + diff(extract(out_img[3], 2)) + diff(extract(out_img[3], 0)))
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
out_data_list[4].append([0] + diff(extract(out_img[4], 1)) + diff(extract(out_img[4], 2)) + diff(extract(out_img[4], 0)))
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
out_data_list[5].append([0] + diff(extract(out_img[5], 1)) + diff(extract(out_img[5], 2)) + diff(extract(out_img[5], 0)))
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
out_data_list[6].append([0] + diff(extract(out_img[6], 1)) + diff(extract(out_img[6], 2)) + diff(extract(out_img[6], 0)))
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
out_data_list[7].append([0] + diff(extract(out_img[7], 1)) + diff(extract(out_img[7], 2)) + diff(extract(out_img[7], 0)))
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
out_data_list[8].append([0] + diff(extract(out_img[8], 1)) + diff(extract(out_img[8], 2)) + diff(extract(out_img[8], 0)))
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
out_data_list[9].append([0] + diff(extract(out_img[9], 1)) + diff(extract(out_img[9], 2)) + diff(extract(out_img[9], 0)))
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
out_data_list[10].append([0] + diff(extract(out_img[10], 1)) + diff(extract(out_img[10], 2)) + diff(extract(out_img[10], 0)))
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
out_data_list[11].append([0] + diff(extract(out_img[11], 1)) + diff(extract(out_img[11], 2)) + diff(extract(out_img[11], 0)))
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
out_data_list[12].append([0] + diff(extract(out_img[12], 1)) + diff(extract(out_img[12], 2)) + diff(extract(out_img[12], 0)))
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
out_data_list[13].append([0] + diff(extract(out_img[13], 1)) + diff(extract(out_img[13], 2)) + diff(extract(out_img[13], 0)))
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
out_data_list[14].append([0] + diff(extract(out_img[14], 1)) + diff(extract(out_img[14], 2)) + diff(extract(out_img[14], 0)))
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
out_data_list[15].append([0] + diff(extract(out_img[15], 1)) + diff(extract(out_img[15], 2)) + diff(extract(out_img[15], 0)))
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
print(out_data_list[15])
|
192
126
|
|
193
127
|
|
194
128
|
|
@@ -214,11 +148,17 @@
|
|
214
148
|
|
215
149
|
print(len(training_data_list))
|
216
150
|
|
151
|
+
print(len(out_data_list[0]))
|
152
|
+
|
153
|
+
print(len(out_data_list[0][0]))
|
154
|
+
|
155
|
+
print(out_data_list[0][0])
|
156
|
+
|
157
|
+
print(len(out_data_list[1:]))
|
158
|
+
|
159
|
+
print(len(out_data_list[0][1]))
|
160
|
+
|
217
|
-
print(out_data_list[0][1:])
|
161
|
+
print(out_data_list[0][1:])
|
218
|
-
|
219
|
-
print(out_data_list[1][1:])
|
220
|
-
|
221
|
-
print(out_data_list[2][1:])
|
222
162
|
|
223
163
|
|
224
164
|
|
@@ -424,130 +364,46 @@
|
|
424
364
|
|
425
365
|
|
426
366
|
|
427
|
-
|
367
|
+
```出力結果
|
428
368
|
|
429
369
|
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
|
430
370
|
|
431
|
-
|
371
|
+
len(out_img) 400
|
372
|
+
|
373
|
+
training_data_list [[0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [8, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [9, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [20, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 4, 4, 4, 4, 4], [21, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 4, 4, 4, 5, 5
|
432
374
|
|
433
375
|
中略
|
434
376
|
|
435
|
-
5, 5, 5, 5, 5, 5, 5
|
436
|
-
|
437
|
-
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
train: 0 / 400
|
448
|
-
|
449
|
-
中略
|
450
|
-
|
451
|
-
#epoch 48
|
452
|
-
|
453
|
-
train: 0 / 400
|
454
|
-
|
455
|
-
#epoch 49
|
456
|
-
|
457
|
-
train: 0 / 400
|
377
|
+
, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [399, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]]
|
378
|
+
|
379
|
+
400
|
380
|
+
|
381
|
+
1
|
382
|
+
|
383
|
+
31
|
384
|
+
|
385
|
+
[0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
386
|
+
|
387
|
+
0
|
458
388
|
|
459
389
|
---------------------------------------------------------------------------
|
460
390
|
|
461
|
-
|
391
|
+
IndexError Traceback (most recent call last)
|
462
|
-
|
392
|
+
|
463
|
-
<ipython-input-18
|
393
|
+
<ipython-input-11-b443850dd402> in <module>()
|
394
|
+
|
464
|
-
|
395
|
+
74 print(out_data_list[0][0])
|
396
|
+
|
397
|
+
75 print(len(out_data_list[1:]))
|
398
|
+
|
465
|
-
|
399
|
+
---> 76 print(len(out_data_list[0][1]))
|
466
|
-
|
467
|
-
|
400
|
+
|
468
|
-
|
469
|
-
--> 203 predict = nn.feedforward(idata)
|
470
|
-
|
471
|
-
204 plabel = np.argmax(predict)
|
472
|
-
|
473
|
-
205 print("predict" ,predict)
|
474
|
-
|
475
|
-
|
476
|
-
|
477
|
-
<ipython-input-18-acd557a26dee> in feedforward(self, idata)
|
478
|
-
|
479
|
-
161
|
480
|
-
|
481
|
-
162 # 隠れ層
|
482
|
-
|
483
|
-
--> 163 x_h = np.dot(self.w_ih, o_i)
|
484
|
-
|
485
|
-
164 o_h = self.af(x_h)
|
486
|
-
|
487
|
-
165
|
488
|
-
|
489
|
-
|
490
|
-
|
491
|
-
<__array_function__ internals> in dot(*args, **kwargs)
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
ValueError: shapes (100,30) and (31,15) not aligned: 30 (dim 1) != 31 (dim 0)
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
というエラーが出てしまいました、今度はidata?をどう直せば良いでしょうか・・・。
|
500
|
-
|
501
|
-
|
502
|
-
|
503
|
-
print(out_data)
|
401
|
+
77 print(out_data_list[0][1:])
|
504
|
-
|
402
|
+
|
505
|
-
|
403
|
+
78
|
506
|
-
|
507
|
-
|
404
|
+
|
508
|
-
|
509
|
-
|
405
|
+
|
510
|
-
|
406
|
+
|
511
|
-
|
407
|
+
IndexError: list index out of range
|
512
|
-
|
513
|
-
print("out_data_list[0][1]" ,out_data_list[0][1])
|
514
|
-
|
515
|
-
print("out_data_list[0][1:]" ,out_data_list[0][1:])
|
516
408
|
|
517
409
|
```
|
518
|
-
|
519
|
-
|
520
|
-
|
521
|
-
を入れると、
|
522
|
-
|
523
|
-
|
524
|
-
|
525
|
-
len(out_data_list[0] 1
|
526
|
-
|
527
|
-
len(out_data_list[0][0] 31
|
528
|
-
|
529
|
-
out_data_list[0][0] [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
530
|
-
|
531
|
-
---------------------------------------------------------------------------
|
532
|
-
|
533
|
-
IndexError Traceback (most recent call last)
|
534
|
-
|
535
|
-
<ipython-input-6-11ba74eedc3b> in <module>()
|
536
|
-
|
537
|
-
74 print("len(out_data_list[0][0]" ,len(out_data_list[0][0]))
|
538
|
-
|
539
|
-
75 print("out_data_list[0][0]" ,out_data_list[0][0])
|
540
|
-
|
541
|
-
---> 76 print("out_data_list[0][1]" ,out_data_list[0][1])
|
542
|
-
|
543
|
-
77 print("out_data_list[0][1:]" ,out_data_list[0][1:])
|
544
|
-
|
545
|
-
78
|
546
|
-
|
547
|
-
|
548
|
-
|
549
|
-
IndexError: list index out of range
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
このようなエラーが出ました、しかしエラーが読み解けません。
|
1
回答を受けて、追記し、結果を載せました。
test
CHANGED
File without changes
|
test
CHANGED
@@ -428,13 +428,11 @@
|
|
428
428
|
|
429
429
|
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
|
430
430
|
|
431
|
-
[[0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
|
431
|
+
[[0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5],
|
432
432
|
|
433
433
|
中略
|
434
434
|
|
435
|
-
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
|
436
|
-
|
437
|
-
[[0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
|
435
|
+
5, 5, 5, 5, 5, 5, 5], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
|
438
436
|
|
439
437
|
#epoch 0
|
440
438
|
|
@@ -499,3 +497,57 @@
|
|
499
497
|
|
500
498
|
|
501
499
|
というエラーが出てしまいました、今度はidata?をどう直せば良いでしょうか・・・。
|
500
|
+
|
501
|
+
|
502
|
+
|
503
|
+
print(out_data)の上に
|
504
|
+
|
505
|
+
```python
|
506
|
+
|
507
|
+
print("len(out_data_list[0]" ,len(out_data_list[0]))
|
508
|
+
|
509
|
+
print("len(out_data_list[0][0]" ,len(out_data_list[0][0]))
|
510
|
+
|
511
|
+
print("out_data_list[0][0]" ,out_data_list[0][0])
|
512
|
+
|
513
|
+
print("out_data_list[0][1]" ,out_data_list[0][1])
|
514
|
+
|
515
|
+
print("out_data_list[0][1:]" ,out_data_list[0][1:])
|
516
|
+
|
517
|
+
```
|
518
|
+
|
519
|
+
|
520
|
+
|
521
|
+
を入れると、
|
522
|
+
|
523
|
+
|
524
|
+
|
525
|
+
len(out_data_list[0] 1
|
526
|
+
|
527
|
+
len(out_data_list[0][0] 31
|
528
|
+
|
529
|
+
out_data_list[0][0] [0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
|
530
|
+
|
531
|
+
---------------------------------------------------------------------------
|
532
|
+
|
533
|
+
IndexError Traceback (most recent call last)
|
534
|
+
|
535
|
+
<ipython-input-6-11ba74eedc3b> in <module>()
|
536
|
+
|
537
|
+
74 print("len(out_data_list[0][0]" ,len(out_data_list[0][0]))
|
538
|
+
|
539
|
+
75 print("out_data_list[0][0]" ,out_data_list[0][0])
|
540
|
+
|
541
|
+
---> 76 print("out_data_list[0][1]" ,out_data_list[0][1])
|
542
|
+
|
543
|
+
77 print("out_data_list[0][1:]" ,out_data_list[0][1:])
|
544
|
+
|
545
|
+
78
|
546
|
+
|
547
|
+
|
548
|
+
|
549
|
+
IndexError: list index out of range
|
550
|
+
|
551
|
+
|
552
|
+
|
553
|
+
このようなエラーが出ました、しかしエラーが読み解けません。
|