質問編集履歴

1

コードを再度掲載いたしました

2021/05/29 09:00

投稿

退会済みユーザー
test CHANGED
File without changes
test CHANGED
@@ -1,3 +1,43 @@
1
+ ```
2
+
3
+ from sklearn.ensemble import RandomForestClassifier
4
+
5
+ from sklearn.datasets import make_moons
6
+
7
+
8
+
9
+ X, y = make_moons(n_samples=100, noise=0.25, random_state=3)
10
+
11
+ X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
12
+
13
+
14
+
15
+ forest = RandomForestClassifier(n_estimators=5, random_state=2)
16
+
17
+ forest.fit(X_train, y_train)
18
+
19
+
20
+
21
+ fig, axes = plt.subplots(2, 3, figsize=(20, 10))
22
+
23
+ for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):
24
+
25
+ ax.set_title("Tree {}".format(i))
26
+
27
+ mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)
28
+
29
+
30
+
31
+ mglearn.plots.plot_2d_separator(forest, X_train, fill=True, ax=axes[-1, -1], alpha=.4)
32
+
33
+
34
+
35
+ axes[-1, -1].set_title("Random Forest")
36
+
37
+ mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)```
38
+
39
+
40
+
1
41
  Pythonではじめる機械学習で勉強しています。
2
42
 
3
43
  ランダムフォレストのところでエラーがでて先に進みません。どうすれば良いのでしょうか?Runtimeエラーでoutput shape not correctと出ています。教えていただければ幸いです。
@@ -18,43 +58,7 @@
18
58
 
19
59
 
20
60
 
21
- from sklearn.ensemble import RandomForestClassifier
22
61
 
23
- from sklearn.datasets import make_moons
24
-
25
-
26
-
27
- X, y = make_moons(n_samples=100, noise=0.25, random_state=3)
28
-
29
- X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)
30
-
31
-
32
-
33
- forest = RandomForestClassifier(n_estimators=5, random_state=2)
34
-
35
- forest.fit(X_train, y_train)
36
-
37
-
38
-
39
-
40
-
41
- fig, axes = plt.subplots(2, 3, figsize=(20, 10))
42
-
43
- for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):
44
-
45
- ax.set_title("Tree {}".format(i))
46
-
47
- mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)
48
-
49
-
50
-
51
- mgleran.plots.plot_2d_separator(forest, X_train_, fill=True, ax=axes[-1, -1],
52
-
53
- alpha=.4)
54
-
55
- axes[-1, -1].set_title("Random Forest")
56
-
57
- mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
58
62
 
59
63
 
60
64