質問編集履歴
1
プログラム全文を掲載しました
title
CHANGED
File without changes
|
body
CHANGED
@@ -72,7 +72,116 @@
|
|
72
72
|
|
73
73
|
### 該当のソースコード
|
74
74
|
|
75
|
+
```analyze.py
|
76
|
+
import cv2
|
77
|
+
import numpy as np
|
78
|
+
import matplotlib.pyplot as plt
|
79
|
+
import methods
|
80
|
+
|
81
|
+
|
82
|
+
# 入力画像読込
|
83
|
+
# 画像サイズ(500(width) x 218(height) pix)
|
84
|
+
img = cv2.imread('images/madslide12.jpg', cv2.IMREAD_COLOR)
|
85
|
+
|
86
|
+
# オリジナル画像保存
|
87
|
+
# import pdb; pdb.set_trace()
|
88
|
+
org = img.copy()
|
89
|
+
cv2.imwrite('results/original.png', org)
|
90
|
+
|
91
|
+
# 画像ファイル
|
92
|
+
# - 画像データを処理プログラムに送る
|
93
|
+
methods.image(org,img)
|
94
|
+
|
95
|
+
# PyMeanShift
|
96
|
+
# - 第1引数:探索範囲、第2引数:探索色相、第3引数:粗さ
|
97
|
+
methods.meanshift(12,3,200)
|
98
|
+
|
99
|
+
# ヒストグラム均一化
|
100
|
+
methods.contrast()
|
101
|
+
|
102
|
+
# 類似色統合
|
103
|
+
methods.clustering()
|
104
|
+
|
105
|
+
# ブロック分割
|
106
|
+
methods.division()
|
107
|
+
|
108
|
+
# カラーラベリング
|
109
|
+
methods.labeling()
|
110
|
+
```
|
111
|
+
|
75
|
-
```
|
112
|
+
```methods.py
|
113
|
+
import cv2
|
114
|
+
import matplotlib.pyplot as plt
|
115
|
+
import matplotlib as mpl
|
116
|
+
import numpy as np
|
117
|
+
import pymeanshift as pms
|
118
|
+
import os
|
119
|
+
import sys
|
120
|
+
from PIL import Image
|
121
|
+
# sys.setrecursionlimit(8000) # 200 x 113 pix
|
122
|
+
sys.setrecursionlimit(30000) # 500 x 281 pix
|
123
|
+
plt.gray()
|
124
|
+
|
125
|
+
|
126
|
+
def image(_org,_img):
|
127
|
+
global org,img,h,w,c
|
128
|
+
global bo,go,ro,al
|
129
|
+
|
130
|
+
org,img = _org,_img
|
131
|
+
h,w,c = img.shape
|
132
|
+
bo,go,ro = cv2.split(org)
|
133
|
+
al = 0.55
|
134
|
+
|
135
|
+
def meanshift(spatial_radius,range_radius,min_density):
|
136
|
+
global img
|
137
|
+
(img,labels,num) = pms.segment(cv2.cvtColor(img,cv2.COLOR_BGR2Lab),spatial_radius,range_radius,min_density)
|
138
|
+
img = cv2.cvtColor(img, cv2.COLOR_Lab2BGR)
|
139
|
+
cv2.imwrite('results/meanshift.png',img)
|
140
|
+
|
141
|
+
def contrast():
|
142
|
+
global img
|
143
|
+
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
144
|
+
h,s,v = cv2.split(hsv)
|
145
|
+
|
146
|
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(3, 3))
|
147
|
+
result = clahe.apply(v)
|
148
|
+
|
149
|
+
hsv = cv2.merge((h,s,result))
|
150
|
+
img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
151
|
+
cv2.imwrite("results/contrast.png", img)
|
152
|
+
|
153
|
+
def division():
|
154
|
+
global block
|
155
|
+
hs,ws,cnt = 113,200,1
|
156
|
+
|
157
|
+
if ((h>hs)&(w>ws)):
|
158
|
+
for j in range(0,h,hs):
|
159
|
+
for i in range(0,w,ws):
|
160
|
+
if (((j+hs)<h)&((i+ws)<w)):
|
161
|
+
div = np.zeros((hs,ws,c),dtype=int)
|
162
|
+
div[0:hs,0:ws] = img[j:j+hs,i:i+ws]
|
163
|
+
else:
|
164
|
+
if (((i+ws)>w)&((j+hs)>h)):
|
165
|
+
div = np.zeros((h-j,w-i,c),dtype=int)
|
166
|
+
div[0:h-j,0:w-i] = img[j:h,i:w]
|
167
|
+
elif ((j+hs)>h):
|
168
|
+
div = np.zeros((h-j,ws,c),dtype=int)
|
169
|
+
div[0:h-j,0:ws] = img[j:h,i:i+ws]
|
170
|
+
else:
|
171
|
+
div = np.zeros((hs,w-i,c),dtype=int)
|
172
|
+
div[0:hs,0:w-i] = img[j:j+hs,i:w]
|
173
|
+
cv2.imwrite('results/division/division{}.png'.format(cnt),div)
|
174
|
+
cnt += 1
|
175
|
+
block = cnt
|
176
|
+
print('block number :',block)
|
177
|
+
|
178
|
+
def clustering():
|
179
|
+
global img
|
180
|
+
im = Image.open('results/contrast.png')
|
181
|
+
im_q = im.quantize(colors=128, method=0, dither=1)
|
182
|
+
im_q.save('results/clustering.png')
|
183
|
+
img = cv2.imread('results/clustering.png', cv2.IMREAD_COLOR)
|
184
|
+
|
76
185
|
def approximation(pix1,pix2):
|
77
186
|
dif = abs(pix1.astype(np.int8)-pix2.astype(np.int8))
|
78
187
|
d1,d2,d3 = dif[0],dif[1],dif[2]
|