質問編集履歴
1
質問の具体化
title
CHANGED
File without changes
|
body
CHANGED
@@ -3,75 +3,4 @@
|
|
3
3
|
可能性としては
|
4
4
|
① rgbaのrの要素が使われる。
|
5
5
|
② rgbaの画像がグレースケールに変換されて学習される。
|
6
|
-
の二つを考えています。どちらだと思いますか?
|
6
|
+
の二つを考えています。どちらだと思いますか?
|
7
|
-
|
8
|
-
・参考にしたサイト
|
9
|
-
[VGG16を転移学習させて「まどか☆マギカ」のキャラを見分ける](https://qiita.com/God_KonaBanana/items/2cf829172087d2423f58)
|
10
|
-
|
11
|
-
・全文
|
12
|
-
```ここに言語を入力
|
13
|
-
#model&train
|
14
|
-
from keras.models import Model
|
15
|
-
from keras.layers import Dense, GlobalAveragePooling2D,Input
|
16
|
-
from keras.applications.vgg16 import VGG16
|
17
|
-
from keras.preprocessing.image import ImageDataGenerator
|
18
|
-
from keras.optimizers import SGD
|
19
|
-
from keras.callbacks import CSVLogger
|
20
|
-
import matplotlib.pyplot as plt
|
21
|
-
import os
|
22
|
-
|
23
|
-
classes = ['hituji','buta','usi']
|
24
|
-
label=['hituji','buta','usi']
|
25
|
-
img_height=256
|
26
|
-
img_width=256
|
27
|
-
batch_size=16
|
28
|
-
num_epochs=50
|
29
|
-
n_categories=3
|
30
|
-
seed=1
|
31
|
-
file_name = 'doubutu_bunrui'
|
32
|
-
print(file_name)
|
33
|
-
|
34
|
-
train_dir==os.path.join('D:','train')
|
35
|
-
|
36
|
-
#model作成(グレースケール)
|
37
|
-
base_model=VGG16(weights=None,include_top=False,
|
38
|
-
input_shape=(img_width,img_height,1),
|
39
|
-
input_tensor=Input(shape=(img_width,img_height,1)),
|
40
|
-
)
|
41
|
-
|
42
|
-
#add new layers instead of FC networks
|
43
|
-
x=base_model.output
|
44
|
-
x=GlobalAveragePooling2D()(x)
|
45
|
-
x=Dense(1024,activation='relu')(x)
|
46
|
-
prediction=Dense(n_categories,activation='softmax')(x)
|
47
|
-
model=Model(inputs=base_model.input,outputs=prediction)
|
48
|
-
#fix weights
|
49
|
-
for layer in base_model.layers[:0]:
|
50
|
-
layer.trainable=False
|
51
|
-
model.compile(optimizer=SGD(lr=0.0001,momentum=0.9),
|
52
|
-
loss='categorical_crossentropy',
|
53
|
-
metrics=['accuracy'])
|
54
|
-
#save model
|
55
|
-
json_string=model.to_json()
|
56
|
-
open(file_name+'.json','w').write(json_string)
|
57
|
-
|
58
|
-
#学習(train)
|
59
|
-
train_datagen=ImageDataGenerator()
|
60
|
-
train_generator=train_datagen.flow_from_directory(
|
61
|
-
train_dir,
|
62
|
-
target_size=(img_width,img_height),
|
63
|
-
batch_size=batch_size,
|
64
|
-
classes=classes,
|
65
|
-
class_mode='categorical',
|
66
|
-
color_mode='grayscale'
|
67
|
-
shuffle=True,
|
68
|
-
seed=seed
|
69
|
-
)
|
70
|
-
#history
|
71
|
-
history=model.fit_generator(train_generator,
|
72
|
-
epochs=num_epochs,
|
73
|
-
verbose=0,
|
74
|
-
callbacks=[CSVLogger(file_name+'.csv')])
|
75
|
-
#save weights
|
76
|
-
model.save(file_name+'.h5')
|
77
|
-
```
|