質問編集履歴

3

コード追加

2020/12/02 08:00

投稿

PPAP_AWS
PPAP_AWS

スコア105

test CHANGED
@@ -1 +1 @@
1
- python エラー 解決策
1
+ python エラー 未来の株価と比較
test CHANGED
File without changes

2

文法修正

2020/12/02 08:00

投稿

PPAP_AWS
PPAP_AWS

スコア105

test CHANGED
File without changes
test CHANGED
@@ -1,87 +1,247 @@
1
1
  Google Colaboratory にて、株のS&P500種指数データを予想する。コードを練習中なのですが、エラー内容が24の範囲外なのでエラーです。的なことが出てるのですが、多分以下のコードらへんからおかしいと思われるのですが、どこのコードの数字を変更すれば良いのか。わからないため、ご教授お願いいたします。
2
2
 
3
+
4
+
5
+ ```
6
+
7
+ for epoch in range(epochs):
8
+
9
+
10
+
11
+ print()
12
+
13
+ print(f'Epoch: {epoch+1}')
14
+
15
+
16
+
17
+ run_train()
18
+
19
+
20
+
21
+ extending_seq = train_seq[-test_size:].tolist()
22
+
23
+
24
+
25
+ run_test()
26
+
27
+
28
+
29
+ plt.figure(figsize=(12, 4))
30
+
31
+ plt.xlim(-20, len(y)+20)
32
+
33
+ plt.grid(True)
34
+
35
+
36
+
37
+ plt.plot(y.numpy())
38
+
39
+
40
+
41
+ plt.plot(
42
+
43
+ range(len(y)-test_size, len(y)),
44
+
45
+ extending_seq[-test_size:]
46
+
47
+ )
48
+
49
+
50
+
51
+ plt.show()
52
+
53
+ ```
54
+
55
+
56
+
57
+ ```
58
+
59
+ plt.plot(train_losses)
60
+
61
+ ```
62
+
63
+
64
+
65
+ ```
66
+
67
+ plt.plot(test_losses)
68
+
69
+ ```
70
+
71
+
72
+
73
+ ```
74
+
75
+ predicted_normalized_labels_list = extending_seq[-test_size:]
76
+
77
+ ```
78
+
79
+
80
+
81
+ ```
82
+
83
+ predicted_normalized_labels_array_1d = np.array(predicted_normalized_labels_list)
84
+
85
+ predicted_normalized_labels_array_1d
86
+
87
+ ```
88
+
89
+
90
+
91
+ ```
92
+
93
+ predicted_normalized_labels_array_2d = predicted_normalized_labels_array_1d.reshape(-1, 1)
94
+
95
+ predicted_normalized_labels_array_2d
96
+
97
+ ```
98
+
99
+
100
+
101
+ ```
102
+
103
+ predicted_labels_array_2d = scaler.inverse_transform(predicted_normalized_labels_array_2d)
104
+
105
+ predicted_labels_array_2d
106
+
107
+ ```
108
+
109
+
110
+
111
+ ```
112
+
113
+ len(predicted_labels_array_2d)
114
+
115
+ ```
116
+
117
+
118
+
119
+ ```
120
+
121
+ stock_data["Adj Close"][-test_size:]
122
+
123
+ ```
124
+
125
+
126
+
127
+ ```
128
+
129
+ len(stock_data["Adj Close"][-test_size:])
130
+
131
+ ```
132
+
133
+
134
+
135
+ ```
136
+
137
+ stock_data.index
138
+
139
+ ```
140
+
141
+
142
+
143
+ ```
144
+
145
+ x_2018_10_to_2020_09 = np.arange('2018-10', '2020-10', dtype='datetime64[M]')
146
+
147
+ x_2018_10_to_2020_09
148
+
149
+ ```
150
+
151
+
152
+
153
+ ```
154
+
155
+ len(x_2018_10_to_2020_09)
156
+
157
+ ```
158
+
159
+
160
+
161
+ ```
162
+
163
+ fig = plt.figure(figsize=(12, 4))
164
+
165
+ plt.title('S$P500 prediction with test data')
166
+
167
+ plt.ylabel('Price')
168
+
169
+ plt.grid(True)
170
+
171
+ plt.autoscale(axis='x', tight=True)
172
+
173
+ fig.autofmt_xdate()
174
+
175
+
176
+
177
+ plt.plot(stock_data["Adj Close"]['2016-01':])
178
+
179
+ plt.plot(x_2018_10_to_2020_09, predicted_labels_array_2d)
180
+
181
+ plt.show()
182
+
183
+ ```
184
+
185
+
186
+
187
+ ```
188
+
189
+ stock_data["Adj Close"]['2018-10':]
190
+
191
+ ```
192
+
193
+
194
+
195
+ ```
196
+
197
+ len(stock_data["Adj Close"]['2018-10':])
198
+
199
+ ```
200
+
201
+
202
+
203
+ ```
204
+
205
+ real_labels_array_1d = stock_data["Adj Close"]['2018-10':].values
206
+
207
+ real_labels_array_1d
208
+
209
+ ```
210
+
211
+
212
+
213
+ ```
214
+
215
+ predicted_labels_array_2d
216
+
217
+ ```
218
+
219
+
220
+
221
+ ```
222
+
223
+ predicted_labels_array_1d = predicted_labels_array_2d.flatten()
224
+
225
+ predicted_labels_array_1d
226
+
227
+ ```
228
+
229
+
230
+
231
+ ```
232
+
233
+ len(predicted_labels_array_1d)
234
+
235
+ ```
236
+
237
+
238
+
239
+
240
+
241
+
242
+
3
243
  ```python
4
244
 
5
- fig = plt.figure(figsize=(12, 4))
6
-
7
- plt.title('S$P500 prediction with test data')
8
-
9
- plt.ylabel('Price')
10
-
11
- plt.grid(True)
12
-
13
- plt.autoscale(axis='x', tight=True)
14
-
15
- fig.autofmt_xdate()
16
-
17
-
18
-
19
- plt.plot(stock_data["Adj Close"]['2016-01':])
20
-
21
- plt.plot(x_2018_10_to_2020_09, predicted_labels_array_2d)
22
-
23
- plt.show()
24
-
25
- ```
26
-
27
-
28
-
29
- ```python
30
-
31
- stock_data["Adj Close"]['2018-10':]
32
-
33
- ```
34
-
35
-
36
-
37
- ```python
38
-
39
- len(stock_data["Adj Close"]['2018-10':])
40
-
41
-
42
-
43
- 27
44
-
45
- ```
46
-
47
- ```python
48
-
49
- real_labels_array_1d = stock_data["Adj Close"]['2018-10':].values
50
-
51
- real_labels_array_1d
52
-
53
- ```
54
-
55
-
56
-
57
- ```python
58
-
59
- predicted_labels_array_2d
60
-
61
- ```
62
-
63
-
64
-
65
- ```python
66
-
67
- predicted_labels_array_1d = predicted_labels_array_2d.flatten()
68
-
69
- predicted_labels_array_1d
70
-
71
- ```
72
-
73
-
74
-
75
- ```python
76
-
77
- len(predicted_labels_array_1d)
78
-
79
- ```
80
-
81
-
82
-
83
- ```python
84
-
85
245
  up_and_down_list = []
86
246
 
87
247
 

1

コード追加

2020/12/01 14:31

投稿

PPAP_AWS
PPAP_AWS

スコア105

test CHANGED
@@ -1 +1 @@
1
- python エラー一覧 解決策 方法
1
+ python エラー 解決策
test CHANGED
File without changes