質問編集履歴
3
コード追加
title
CHANGED
|
@@ -1,1 +1,1 @@
|
|
|
1
|
-
python エラー
|
|
1
|
+
python エラー 未来の株価と比較
|
body
CHANGED
|
File without changes
|
2
文法修正
title
CHANGED
|
File without changes
|
body
CHANGED
|
@@ -1,5 +1,84 @@
|
|
|
1
1
|
Google Colaboratory にて、株のS&P500種指数データを予想する。コードを練習中なのですが、エラー内容が24の範囲外なのでエラーです。的なことが出てるのですが、多分以下のコードらへんからおかしいと思われるのですが、どこのコードの数字を変更すれば良いのか。わからないため、ご教授お願いいたします。
|
|
2
|
+
|
|
3
|
+
```
|
|
4
|
+
for epoch in range(epochs):
|
|
5
|
+
|
|
6
|
+
print()
|
|
7
|
+
print(f'Epoch: {epoch+1}')
|
|
8
|
+
|
|
9
|
+
run_train()
|
|
10
|
+
|
|
11
|
+
extending_seq = train_seq[-test_size:].tolist()
|
|
12
|
+
|
|
13
|
+
run_test()
|
|
14
|
+
|
|
15
|
+
plt.figure(figsize=(12, 4))
|
|
16
|
+
plt.xlim(-20, len(y)+20)
|
|
17
|
+
plt.grid(True)
|
|
18
|
+
|
|
19
|
+
plt.plot(y.numpy())
|
|
20
|
+
|
|
21
|
+
plt.plot(
|
|
22
|
+
range(len(y)-test_size, len(y)),
|
|
23
|
+
extending_seq[-test_size:]
|
|
24
|
+
)
|
|
25
|
+
|
|
2
|
-
|
|
26
|
+
plt.show()
|
|
27
|
+
```
|
|
28
|
+
↓
|
|
29
|
+
```
|
|
30
|
+
plt.plot(train_losses)
|
|
31
|
+
```
|
|
32
|
+
↓
|
|
33
|
+
```
|
|
34
|
+
plt.plot(test_losses)
|
|
35
|
+
```
|
|
36
|
+
↓
|
|
37
|
+
```
|
|
38
|
+
predicted_normalized_labels_list = extending_seq[-test_size:]
|
|
39
|
+
```
|
|
40
|
+
↓
|
|
41
|
+
```
|
|
42
|
+
predicted_normalized_labels_array_1d = np.array(predicted_normalized_labels_list)
|
|
43
|
+
predicted_normalized_labels_array_1d
|
|
44
|
+
```
|
|
45
|
+
↓
|
|
46
|
+
```
|
|
47
|
+
predicted_normalized_labels_array_2d = predicted_normalized_labels_array_1d.reshape(-1, 1)
|
|
48
|
+
predicted_normalized_labels_array_2d
|
|
49
|
+
```
|
|
50
|
+
↓
|
|
51
|
+
```
|
|
52
|
+
predicted_labels_array_2d = scaler.inverse_transform(predicted_normalized_labels_array_2d)
|
|
53
|
+
predicted_labels_array_2d
|
|
54
|
+
```
|
|
55
|
+
↓
|
|
56
|
+
```
|
|
57
|
+
len(predicted_labels_array_2d)
|
|
58
|
+
```
|
|
59
|
+
↓
|
|
60
|
+
```
|
|
61
|
+
stock_data["Adj Close"][-test_size:]
|
|
62
|
+
```
|
|
63
|
+
↓
|
|
64
|
+
```
|
|
65
|
+
len(stock_data["Adj Close"][-test_size:])
|
|
66
|
+
```
|
|
67
|
+
↓
|
|
68
|
+
```
|
|
69
|
+
stock_data.index
|
|
70
|
+
```
|
|
71
|
+
↓
|
|
72
|
+
```
|
|
73
|
+
x_2018_10_to_2020_09 = np.arange('2018-10', '2020-10', dtype='datetime64[M]')
|
|
74
|
+
x_2018_10_to_2020_09
|
|
75
|
+
```
|
|
76
|
+
↓
|
|
77
|
+
```
|
|
78
|
+
len(x_2018_10_to_2020_09)
|
|
79
|
+
```
|
|
80
|
+
↓
|
|
81
|
+
```
|
|
3
82
|
fig = plt.figure(figsize=(12, 4))
|
|
4
83
|
plt.title('S$P500 prediction with test data')
|
|
5
84
|
plt.ylabel('Price')
|
|
@@ -12,33 +91,34 @@
|
|
|
12
91
|
plt.show()
|
|
13
92
|
```
|
|
14
93
|
↓
|
|
15
|
-
```
|
|
94
|
+
```
|
|
16
95
|
stock_data["Adj Close"]['2018-10':]
|
|
17
96
|
```
|
|
18
97
|
↓
|
|
19
|
-
```
|
|
98
|
+
```
|
|
20
99
|
len(stock_data["Adj Close"]['2018-10':])
|
|
100
|
+
```
|
|
21
101
|
↓
|
|
22
|
-
27
|
|
23
102
|
```
|
|
24
|
-
```python
|
|
25
103
|
real_labels_array_1d = stock_data["Adj Close"]['2018-10':].values
|
|
26
104
|
real_labels_array_1d
|
|
27
105
|
```
|
|
28
106
|
↓
|
|
29
|
-
```
|
|
107
|
+
```
|
|
30
108
|
predicted_labels_array_2d
|
|
31
109
|
```
|
|
32
110
|
↓
|
|
33
|
-
```
|
|
111
|
+
```
|
|
34
112
|
predicted_labels_array_1d = predicted_labels_array_2d.flatten()
|
|
35
113
|
predicted_labels_array_1d
|
|
36
114
|
```
|
|
37
115
|
↓
|
|
38
|
-
```
|
|
116
|
+
```
|
|
39
117
|
len(predicted_labels_array_1d)
|
|
40
118
|
```
|
|
41
119
|
↓
|
|
120
|
+
↓
|
|
121
|
+
|
|
42
122
|
```python
|
|
43
123
|
up_and_down_list = []
|
|
44
124
|
|
1
コード追加
title
CHANGED
|
@@ -1,1 +1,1 @@
|
|
|
1
|
-
python エラー
|
|
1
|
+
python エラー 解決策
|
body
CHANGED
|
File without changes
|