質問編集履歴
5
文法修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -372,7 +372,7 @@
|
|
372
372
|
|
373
373
|
|
374
374
|
|
375
|
-
```
|
375
|
+
```Error
|
376
376
|
|
377
377
|
Epoch: 1
|
378
378
|
|
4
変更点追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -20,7 +20,11 @@
|
|
20
20
|
|
21
21
|
import matplotlib.pyplot as plt
|
22
22
|
|
23
|
-
|
23
|
+
```
|
24
|
+
|
25
|
+
|
26
|
+
|
27
|
+
```python
|
24
28
|
|
25
29
|
stock_data = pd.read_csv(
|
26
30
|
|
@@ -318,6 +322,10 @@
|
|
318
322
|
|
319
323
|
↓
|
320
324
|
|
325
|
+
```
|
326
|
+
|
327
|
+
```python
|
328
|
+
|
321
329
|
for epoch in range(epochs):
|
322
330
|
|
323
331
|
|
@@ -360,13 +368,11 @@
|
|
360
368
|
|
361
369
|
plt.show()
|
362
370
|
|
363
|
-
|
371
|
+
```
|
364
|
-
|
372
|
+
|
373
|
+
|
374
|
+
|
365
|
-
|
375
|
+
```エラーコード
|
366
|
-
|
367
|
-
↓
|
368
|
-
|
369
|
-
|
370
376
|
|
371
377
|
Epoch: 1
|
372
378
|
|
@@ -406,6 +412,4 @@
|
|
406
412
|
|
407
413
|
AttributeError: 'Tensor' object has no attribute 'vierq'
|
408
414
|
|
409
|
-
コード
|
410
|
-
|
411
415
|
```
|
3
コード追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -6,43 +6,349 @@
|
|
6
6
|
|
7
7
|
|
8
8
|
|
9
|
+
一連の流れ。
|
10
|
+
|
9
11
|
```python
|
10
12
|
|
11
|
-
|
13
|
+
import torch
|
14
|
+
|
15
|
+
import torch.nn as nn
|
16
|
+
|
17
|
+
import numpy as np
|
18
|
+
|
19
|
+
import pandas as pd
|
20
|
+
|
21
|
+
import matplotlib.pyplot as plt
|
22
|
+
|
23
|
+
↓
|
24
|
+
|
25
|
+
stock_data = pd.read_csv(
|
26
|
+
|
27
|
+
"/content/drive/MyDrive/^GSPC.csv",
|
28
|
+
|
29
|
+
index_col = 0,
|
30
|
+
|
31
|
+
parse_dates=True
|
32
|
+
|
33
|
+
)
|
34
|
+
|
35
|
+
|
36
|
+
|
37
|
+
stock_data
|
38
|
+
|
39
|
+
↓
|
40
|
+
|
41
|
+
stock_data.drop(
|
42
|
+
|
43
|
+
["Open", "High", "Low", "Close", "Volume"],
|
44
|
+
|
45
|
+
axis="columns",
|
46
|
+
|
47
|
+
inplace=True
|
48
|
+
|
49
|
+
)
|
50
|
+
|
51
|
+
|
52
|
+
|
53
|
+
stock_data
|
54
|
+
|
55
|
+
↓
|
56
|
+
|
57
|
+
stock_data.plot(figsize=(12, 4))
|
58
|
+
|
59
|
+
↓
|
60
|
+
|
61
|
+
y = stock_data["Adj Close"].values
|
62
|
+
|
63
|
+
y
|
64
|
+
|
65
|
+
↓
|
66
|
+
|
67
|
+
from sklearn.preprocessing import MinMaxScaler
|
68
|
+
|
69
|
+
↓
|
70
|
+
|
71
|
+
scaler = MinMaxScaler(feature_range=(-1, 1))
|
72
|
+
|
73
|
+
scaler.fit(y.reshape(-1, 1))
|
74
|
+
|
75
|
+
y =scaler.transform(y.reshape(-1, 1))
|
76
|
+
|
77
|
+
y
|
78
|
+
|
79
|
+
↓
|
80
|
+
|
81
|
+
y = torch.FloatTensor(y).view(-1)
|
82
|
+
|
83
|
+
y
|
84
|
+
|
85
|
+
↓
|
86
|
+
|
87
|
+
test_size = 24
|
88
|
+
|
89
|
+
|
90
|
+
|
91
|
+
train_seq = y[:-test_size]
|
92
|
+
|
93
|
+
test_seq = y[-test_size:]
|
94
|
+
|
95
|
+
↓
|
96
|
+
|
97
|
+
plt.figure(figsize=(12, 4))
|
98
|
+
|
99
|
+
plt.xlim(-20, len(train_seq)+20)
|
100
|
+
|
101
|
+
plt.grid(True)
|
102
|
+
|
103
|
+
plt.plot(train_seq)
|
104
|
+
|
105
|
+
↓
|
106
|
+
|
107
|
+
train_window_size = 12
|
108
|
+
|
109
|
+
↓
|
110
|
+
|
111
|
+
def input_data(seq, ws):
|
112
|
+
|
113
|
+
out = []
|
114
|
+
|
115
|
+
L = len(seq)
|
116
|
+
|
117
|
+
|
118
|
+
|
119
|
+
for i in range(L-ws):
|
120
|
+
|
121
|
+
window = seq[i:i+ws]
|
122
|
+
|
123
|
+
label = seq[i+ws:i+ws+1]
|
124
|
+
|
125
|
+
out.append((window, label))
|
126
|
+
|
127
|
+
|
128
|
+
|
129
|
+
return out
|
130
|
+
|
131
|
+
↓
|
132
|
+
|
133
|
+
train_data = input_data(train_seq, train_window_size)
|
134
|
+
|
135
|
+
↓
|
136
|
+
|
137
|
+
print("The NUmber of Training Data: ",len(train_data))
|
138
|
+
|
139
|
+
↓
|
140
|
+
|
141
|
+
class Model(nn.Module):
|
142
|
+
|
143
|
+
|
144
|
+
|
145
|
+
def __init__(self, input=1, h=50, output=1):
|
146
|
+
|
147
|
+
|
148
|
+
|
149
|
+
super().__init__()
|
150
|
+
|
151
|
+
self.hidden_size = h
|
152
|
+
|
153
|
+
|
154
|
+
|
155
|
+
self.lstm = nn.LSTM(input, h)
|
156
|
+
|
157
|
+
self.fc = nn.Linear(h, output)
|
158
|
+
|
159
|
+
|
160
|
+
|
161
|
+
self.hidden = (
|
162
|
+
|
163
|
+
torch.zeros(1, 1, h),
|
164
|
+
|
165
|
+
torch.zeros(1, 1, h)
|
166
|
+
|
167
|
+
)
|
168
|
+
|
169
|
+
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
def forward(self, seq):
|
174
|
+
|
175
|
+
|
176
|
+
|
177
|
+
out, _=self.lstm(
|
178
|
+
|
179
|
+
seq.vierq(len(seq), 1, -1),
|
180
|
+
|
181
|
+
self.hidden
|
182
|
+
|
183
|
+
)
|
184
|
+
|
185
|
+
|
186
|
+
|
187
|
+
out = self.fc(
|
188
|
+
|
189
|
+
out.view(len(seq), -1)
|
190
|
+
|
191
|
+
)
|
192
|
+
|
193
|
+
|
194
|
+
|
195
|
+
return out[-1]
|
196
|
+
|
197
|
+
↓
|
198
|
+
|
199
|
+
torch.manual_seed(123)
|
200
|
+
|
201
|
+
model = Model()
|
202
|
+
|
203
|
+
criterion = nn.MSELoss()
|
204
|
+
|
205
|
+
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
|
206
|
+
|
207
|
+
↓
|
208
|
+
|
209
|
+
epochs = 10
|
210
|
+
|
211
|
+
train_losses = []
|
212
|
+
|
213
|
+
test_losses = []
|
214
|
+
|
215
|
+
↓
|
216
|
+
|
217
|
+
def run_train():
|
218
|
+
|
219
|
+
model.train()
|
220
|
+
|
221
|
+
|
222
|
+
|
223
|
+
for train_window, correct_label in train_data:
|
224
|
+
|
225
|
+
optimizer.zero_grad()
|
226
|
+
|
227
|
+
|
228
|
+
|
229
|
+
model.hidden = (
|
230
|
+
|
231
|
+
torch.zeros(1, 1, model.hidden_size),
|
232
|
+
|
233
|
+
torch.zeros(1, 1, model.hidden_size),
|
234
|
+
|
235
|
+
|
236
|
+
|
237
|
+
)
|
238
|
+
|
239
|
+
|
240
|
+
|
241
|
+
train_predicred_label = model.forward(train_window)
|
242
|
+
|
243
|
+
train_loss = criterion(train_predicted_label, correct_label)
|
244
|
+
|
245
|
+
|
246
|
+
|
247
|
+
train_loss.backward()
|
248
|
+
|
249
|
+
optimizer.step()
|
250
|
+
|
251
|
+
|
252
|
+
|
253
|
+
train_losses.append(train_loss)
|
254
|
+
|
255
|
+
↓
|
256
|
+
|
257
|
+
a = torch.tensor([3])
|
258
|
+
|
259
|
+
a.item()
|
260
|
+
|
261
|
+
↓
|
262
|
+
|
263
|
+
def run_test():
|
264
|
+
|
265
|
+
model.eval()
|
266
|
+
|
267
|
+
|
268
|
+
|
269
|
+
for i in range(test_size):
|
270
|
+
|
271
|
+
|
272
|
+
|
273
|
+
test_window = torch.FloatTensor(extending_seq[-test_size:])
|
274
|
+
|
275
|
+
|
276
|
+
|
277
|
+
with torch.no_grad():
|
278
|
+
|
279
|
+
|
280
|
+
|
281
|
+
model.hidden = (
|
282
|
+
|
283
|
+
torch.zeros(1, 1, model.hidden_size),
|
284
|
+
|
285
|
+
torch.zeros(1, 1, model.hidden_size),
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
)
|
290
|
+
|
291
|
+
|
292
|
+
|
293
|
+
test_predicted_label = mode.forward(test_window)
|
294
|
+
|
295
|
+
extending_seq.append(test_predicted_label())
|
296
|
+
|
297
|
+
|
298
|
+
|
299
|
+
test_loss = criterion(
|
300
|
+
|
301
|
+
torch.FloatTensor(extending_seq[-test_size:]),
|
302
|
+
|
303
|
+
y[len(y)-test_size:]
|
304
|
+
|
305
|
+
)
|
306
|
+
|
307
|
+
|
308
|
+
|
309
|
+
test_losses.append(test_loss)
|
310
|
+
|
311
|
+
↓
|
312
|
+
|
313
|
+
train_seq[-test_size:]
|
314
|
+
|
315
|
+
↓
|
316
|
+
|
317
|
+
train_seq[-test_size:].tolist()
|
318
|
+
|
319
|
+
↓
|
12
320
|
|
13
321
|
for epoch in range(epochs):
|
14
322
|
|
323
|
+
|
324
|
+
|
15
325
|
print()
|
16
326
|
|
17
327
|
print(f'Epoch: {epoch+1}')
|
18
328
|
|
19
329
|
|
20
330
|
|
21
|
-
run_train()
|
331
|
+
run_train()
|
22
|
-
|
23
|
-
|
24
|
-
|
332
|
+
|
333
|
+
|
334
|
+
|
25
|
-
extending_seq = train_seq[-test_size:].to
|
335
|
+
extending_seq = train_seq[-test_size:].tolist()
|
26
|
-
|
27
|
-
|
28
|
-
|
336
|
+
|
337
|
+
|
338
|
+
|
29
|
-
run_test()
|
339
|
+
run_test()
|
30
|
-
|
31
|
-
|
32
|
-
|
340
|
+
|
341
|
+
|
342
|
+
|
33
|
-
plt.figure(figsize=(12, 4))
|
343
|
+
plt.figure(figsize=(12, 4))
|
34
|
-
|
344
|
+
|
35
|
-
plt.xlim(-2
|
345
|
+
plt.xlim(-21, len(y)+20)
|
36
|
-
|
346
|
+
|
37
|
-
plt.grid(True)
|
347
|
+
plt.grid(True)
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
348
|
+
|
42
|
-
|
43
|
-
|
44
|
-
|
349
|
+
|
350
|
+
|
45
|
-
plt.plot(
|
351
|
+
plt.plot(
|
46
352
|
|
47
353
|
range(len(y)-test_size, len(y)),
|
48
354
|
|
@@ -52,30 +358,54 @@
|
|
52
358
|
|
53
359
|
|
54
360
|
|
55
|
-
plt.show()
|
361
|
+
plt.show()
|
362
|
+
|
363
|
+
↓
|
364
|
+
|
365
|
+
↓エラー内容
|
366
|
+
|
367
|
+
↓
|
368
|
+
|
369
|
+
|
370
|
+
|
371
|
+
Epoch: 1
|
372
|
+
|
373
|
+
---------------------------------------------------------------------------
|
374
|
+
|
375
|
+
AttributeError Traceback (most recent call last)
|
376
|
+
|
377
|
+
<ipython-input-85-98e8d85b09e9> in <module>()
|
378
|
+
|
379
|
+
4 print(f'Epoch: {epoch+1}')
|
380
|
+
|
381
|
+
5
|
382
|
+
|
383
|
+
----> 6 run_train()
|
384
|
+
|
385
|
+
7
|
386
|
+
|
387
|
+
8 extending_seq = train_seq[-test_size:].tolist()
|
388
|
+
|
389
|
+
|
390
|
+
|
391
|
+
1 frames
|
392
|
+
|
393
|
+
<ipython-input-77-b3af88443259> in forward(self, seq)
|
394
|
+
|
395
|
+
18
|
396
|
+
|
397
|
+
19 out, _=self.lstm(
|
398
|
+
|
399
|
+
---> 20 seq.vierq(len(seq), 1, -1),
|
400
|
+
|
401
|
+
21 self.hidden
|
402
|
+
|
403
|
+
22 )
|
404
|
+
|
405
|
+
|
406
|
+
|
407
|
+
AttributeError: 'Tensor' object has no attribute 'vierq'
|
408
|
+
|
409
|
+
コード
|
56
410
|
|
57
411
|
```
|
58
|
-
|
59
|
-
↓エラーコード
|
60
|
-
|
61
|
-
```error
|
62
|
-
|
63
|
-
NameError Traceback (most recent call last)
|
64
|
-
|
65
|
-
<ipython-input-11-24515b2a1814> in <module>()
|
66
|
-
|
67
|
-
----> 1 for epoch in range(epochs):
|
68
|
-
|
69
|
-
2 print()
|
70
|
-
|
71
|
-
3 print(f'Epoch: {epoch+1}')
|
72
|
-
|
73
|
-
4
|
74
|
-
|
75
|
-
5 run_train()
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
NameError: name 'epochs' is not defined
|
80
|
-
|
81
|
-
```
|
2
変更点追加
test
CHANGED
@@ -1 +1 @@
|
|
1
|
-
python
|
1
|
+
NameError: name 'epochs' is not defined python エラーコード
|
test
CHANGED
File without changes
|
1
文法修正
test
CHANGED
@@ -1 +1 @@
|
|
1
|
-
株
|
1
|
+
python 株分析 練習 エラーコード
|
test
CHANGED
File without changes
|