質問編集履歴
6
文章修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -1,15 +1,17 @@
|
|
1
1
|
深層学習で2つの画像を見分けるというものを実装しているのですが
|
2
2
|
|
3
3
|
|
4
|
+
```
|
4
|
-
|
5
|
+
import imageio
|
5
6
|
import numpy as np
|
6
7
|
from PIL import Image
|
7
8
|
|
8
9
|
|
9
10
|
|
10
11
|
|
12
|
+
X = []
|
13
|
+
y = []
|
11
14
|
|
12
|
-
|
13
15
|
for i in range(1, 61):
|
14
16
|
|
15
17
|
filepath = f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png"
|
@@ -23,23 +25,25 @@
|
|
23
25
|
img.save(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png")
|
24
26
|
|
25
27
|
|
26
|
-
|
28
|
+
|
27
29
|
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
28
|
-
X = np.
|
30
|
+
X = np.append(X, p1)
|
29
31
|
y = np.append(y, np.array([0], dtype = np.uint8)).reshape(-1,1)
|
30
|
-
|
32
|
+
|
31
33
|
|
34
|
+
|
32
35
|
p2 =imageio.imread(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png").reshape(150,150,4)
|
33
|
-
X = np.
|
36
|
+
X = np.append(X, p2)
|
34
37
|
y = np.append(y, np.array([1], dtype = np.uint8)).reshape(-1,1)
|
35
|
-
|
38
|
+
|
36
39
|
X_train = X[:48]
|
37
40
|
y_train = y[:48]
|
38
41
|
X_test = X[48:]
|
39
42
|
y_test = y[48:]
|
43
|
+
|
40
44
|
print(X_train.shape)
|
41
45
|
|
42
|
-
|
46
|
+
rom keras.models import Sequential
|
43
47
|
from keras.layers import Dense, Dropout, Flatten
|
44
48
|
from keras.layers import Conv2D, MaxPooling2D
|
45
49
|
from keras.optimizers import Adam
|
@@ -47,7 +51,7 @@
|
|
47
51
|
|
48
52
|
model = Sequential()
|
49
53
|
model.add(Conv2D(16, (3, 3),
|
50
|
-
input_shape=(150, 150,
|
54
|
+
input_shape=(150, 150, 4), activation='relu'))
|
51
55
|
model.add(Conv2D(32, (3, 3), activation='relu'))
|
52
56
|
model.add(MaxPooling2D(pool_size=(2, 2))) # (A)
|
53
57
|
model.add(Conv2D(64, (3, 3), activation='relu'))
|
@@ -70,20 +74,14 @@
|
|
70
74
|
loss, accuracy = model.evaluate(X_test, y_test)
|
71
75
|
print("loss:{} accuracy:{}".format(loss, accuracy))
|
72
76
|
print("Computation time:{0:.3f} sec".format(time.time() - startTime))
|
73
|
-
|
74
77
|
```
|
75
|
-
`` ValueError: Input 0 of layer sequential_49 is incompatible with the layer: : expected min_ndim=4, found ndim=2. Full shape received: [None, 1]``
|
76
|
-
というエラーが出てきてしまいます。
|
77
|
-
これはどういう意味でどう解決すれば良いのでしょうか?
|
78
78
|
|
79
|
+
のようにコードを書くと
|
79
80
|
|
81
|
+
```
|
82
|
+
---> 26 history = model.fit(X_train, y_train, batch_size=1000, epochs=20,verbose=1, validation_data=(X_test, y_test))
|
80
83
|
|
81
|
-
```ValueError Traceback (most recent call last)
|
82
|
-
<ipython-input-250-ea0903ed1297> in <module>
|
83
|
-
24 startTime = time.time()
|
84
|
-
|
85
|
-
|
86
|
-
|
84
|
+
ValueError: Input 0 of layer sequential is incompatible with the layer: : expected min_ndim=4, found ndim=2. Full shape received: [None, 1]
|
85
|
+
```
|
87
86
|
|
88
|
-
|
89
|
-
|
87
|
+
のようにエラーが出てしまいます。どこかおかしい場所はありますでしょうか。。。
|
5
文章修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -25,12 +25,12 @@
|
|
25
25
|
|
26
26
|
|
27
27
|
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
28
|
-
X = p1
|
28
|
+
X = np.expand_dims(p1, axis=-1)
|
29
29
|
y = np.append(y, np.array([0], dtype = np.uint8)).reshape(-1,1)
|
30
30
|
|
31
31
|
|
32
32
|
p2 =imageio.imread(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png").reshape(150,150,4)
|
33
|
-
X = p2
|
33
|
+
X = np.expand_dims(p2,axis=-1)
|
34
34
|
y = np.append(y, np.array([1], dtype = np.uint8)).reshape(-1,1)
|
35
35
|
|
36
36
|
X_train = X[:48]
|
@@ -72,7 +72,7 @@
|
|
72
72
|
print("Computation time:{0:.3f} sec".format(time.time() - startTime))
|
73
73
|
|
74
74
|
```
|
75
|
-
``
|
75
|
+
`` ValueError: Input 0 of layer sequential_49 is incompatible with the layer: : expected min_ndim=4, found ndim=2. Full shape received: [None, 1]``
|
76
76
|
というエラーが出てきてしまいます。
|
77
77
|
これはどういう意味でどう解決すれば良いのでしょうか?
|
78
78
|
|
4
文章修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -23,7 +23,7 @@
|
|
23
23
|
img.save(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png")
|
24
24
|
|
25
25
|
|
26
|
-
|
26
|
+
|
27
27
|
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
28
28
|
X = p1
|
29
29
|
y = np.append(y, np.array([0], dtype = np.uint8)).reshape(-1,1)
|
3
コードの追記
title
CHANGED
File without changes
|
body
CHANGED
@@ -70,16 +70,14 @@
|
|
70
70
|
loss, accuracy = model.evaluate(X_test, y_test)
|
71
71
|
print("loss:{} accuracy:{}".format(loss, accuracy))
|
72
72
|
print("Computation time:{0:.3f} sec".format(time.time() - startTime))
|
73
|
+
|
73
74
|
```
|
74
|
-
``` ValueError: Input 0 of layer sequential_38 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 150, 4]``
|
75
|
+
``` ValueError: Input 0 of layer sequential_38 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 150, 4]``
|
75
|
-
|
76
|
-
|
77
76
|
というエラーが出てきてしまいます。
|
77
|
+
これはどういう意味でどう解決すれば良いのでしょうか?
|
78
78
|
|
79
|
-
これはどういう意味なのでしょうか?
|
80
79
|
|
81
80
|
|
82
|
-
|
83
81
|
```ValueError Traceback (most recent call last)
|
84
82
|
<ipython-input-250-ea0903ed1297> in <module>
|
85
83
|
24 startTime = time.time()
|
2
コードの追記
title
CHANGED
File without changes
|
body
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
深層学習をしているのですが
|
1
|
+
深層学習で2つの画像を見分けるというものを実装しているのですが
|
2
2
|
|
3
3
|
|
4
4
|
```import imageio
|
@@ -73,6 +73,19 @@
|
|
73
73
|
```
|
74
74
|
``` ValueError: Input 0 of layer sequential_38 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 150, 4]```
|
75
75
|
|
76
|
+
|
76
77
|
というエラーが出てきてしまいます。
|
77
78
|
|
78
|
-
これはどういう意味なのでしょうか?
|
79
|
+
これはどういう意味なのでしょうか?
|
80
|
+
|
81
|
+
|
82
|
+
|
83
|
+
```ValueError Traceback (most recent call last)
|
84
|
+
<ipython-input-250-ea0903ed1297> in <module>
|
85
|
+
24 startTime = time.time()
|
86
|
+
|
87
|
+
|
88
|
+
→ 26 history = model.fit(X_train, y_train, batch_size=1000, epochs=20,verbose=1, validation_data=(X_test, y_test))```
|
89
|
+
|
90
|
+
|
91
|
+
ちなみにこの26行でエラーが出ていると記述されております。
|
1
コードを追加
title
CHANGED
File without changes
|
body
CHANGED
@@ -1,5 +1,76 @@
|
|
1
1
|
深層学習をしているのですが
|
2
2
|
|
3
|
+
|
4
|
+
```import imageio
|
5
|
+
import numpy as np
|
6
|
+
from PIL import Image
|
7
|
+
|
8
|
+
|
9
|
+
|
10
|
+
|
11
|
+
|
12
|
+
|
13
|
+
for i in range(1, 61):
|
14
|
+
|
15
|
+
filepath = f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png"
|
16
|
+
img = Image.open(filepath)
|
17
|
+
img = img.convert("RGBA")
|
18
|
+
img.save(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png")
|
19
|
+
|
20
|
+
filepath = f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png"
|
21
|
+
img = Image.open(filepath)
|
22
|
+
img = img.convert("RGBA") ## RGBAカラーに変換
|
23
|
+
img.save(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png")
|
24
|
+
|
25
|
+
|
26
|
+
a = np.ones(4)
|
27
|
+
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
28
|
+
X = p1
|
29
|
+
y = np.append(y, np.array([0], dtype = np.uint8)).reshape(-1,1)
|
30
|
+
|
31
|
+
|
32
|
+
p2 =imageio.imread(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png").reshape(150,150,4)
|
33
|
+
X = p2
|
34
|
+
y = np.append(y, np.array([1], dtype = np.uint8)).reshape(-1,1)
|
35
|
+
|
36
|
+
X_train = X[:48]
|
37
|
+
y_train = y[:48]
|
38
|
+
X_test = X[48:]
|
39
|
+
y_test = y[48:]
|
40
|
+
print(X_train.shape)
|
41
|
+
|
42
|
+
from keras.models import Sequential
|
43
|
+
from keras.layers import Dense, Dropout, Flatten
|
44
|
+
from keras.layers import Conv2D, MaxPooling2D
|
45
|
+
from keras.optimizers import Adam
|
46
|
+
import time
|
47
|
+
|
48
|
+
model = Sequential()
|
49
|
+
model.add(Conv2D(16, (3, 3),
|
50
|
+
input_shape=(150, 150, 3), activation='relu'))
|
51
|
+
model.add(Conv2D(32, (3, 3), activation='relu'))
|
52
|
+
model.add(MaxPooling2D(pool_size=(2, 2))) # (A)
|
53
|
+
model.add(Conv2D(64, (3, 3), activation='relu'))
|
54
|
+
model.add(MaxPooling2D(pool_size=(2, 2))) # (B)
|
55
|
+
model.add(Dropout(0.25)) # (C)
|
56
|
+
model.add(Flatten())
|
57
|
+
model.add(Dense(128, activation='relu'))
|
58
|
+
model.add(Dropout(0.25)) # (D)
|
59
|
+
model.add(Dense(2, activation='softmax'))
|
60
|
+
|
61
|
+
model.compile(loss='categorical_crossentropy',
|
62
|
+
optimizer=Adam(),
|
63
|
+
metrics=['accuracy'])
|
64
|
+
|
65
|
+
startTime = time.time()
|
66
|
+
|
67
|
+
history = model.fit(X_train, y_train, batch_size=1000, epochs=20,verbose=1, validation_data=(X_test, y_test))
|
68
|
+
|
69
|
+
|
70
|
+
loss, accuracy = model.evaluate(X_test, y_test)
|
71
|
+
print("loss:{} accuracy:{}".format(loss, accuracy))
|
72
|
+
print("Computation time:{0:.3f} sec".format(time.time() - startTime))
|
73
|
+
```
|
3
74
|
``` ValueError: Input 0 of layer sequential_38 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 150, 4]```
|
4
75
|
|
5
76
|
というエラーが出てきてしまいます。
|