質問編集履歴
6
文章修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -4,7 +4,9 @@
|
|
4
4
|
|
5
5
|
|
6
6
|
|
7
|
+
```
|
8
|
+
|
7
|
-
|
9
|
+
import imageio
|
8
10
|
|
9
11
|
import numpy as np
|
10
12
|
|
@@ -18,7 +20,9 @@
|
|
18
20
|
|
19
21
|
|
20
22
|
|
23
|
+
X = []
|
21
24
|
|
25
|
+
y = []
|
22
26
|
|
23
27
|
|
24
28
|
|
@@ -48,25 +52,27 @@
|
|
48
52
|
|
49
53
|
|
50
54
|
|
51
|
-
|
55
|
+
|
52
56
|
|
53
57
|
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
54
58
|
|
55
|
-
X = np.e
|
59
|
+
X = np.append(X, p1)
|
56
60
|
|
57
61
|
y = np.append(y, np.array([0], dtype = np.uint8)).reshape(-1,1)
|
58
62
|
|
59
|
-
|
63
|
+
|
64
|
+
|
65
|
+
|
60
66
|
|
61
67
|
|
62
68
|
|
63
69
|
p2 =imageio.imread(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png").reshape(150,150,4)
|
64
70
|
|
65
|
-
X = np.e
|
71
|
+
X = np.append(X, p2)
|
66
72
|
|
67
73
|
y = np.append(y, np.array([1], dtype = np.uint8)).reshape(-1,1)
|
68
74
|
|
69
|
-
|
75
|
+
|
70
76
|
|
71
77
|
X_train = X[:48]
|
72
78
|
|
@@ -76,11 +82,13 @@
|
|
76
82
|
|
77
83
|
y_test = y[48:]
|
78
84
|
|
85
|
+
|
86
|
+
|
79
87
|
print(X_train.shape)
|
80
88
|
|
81
89
|
|
82
90
|
|
83
|
-
|
91
|
+
rom keras.models import Sequential
|
84
92
|
|
85
93
|
from keras.layers import Dense, Dropout, Flatten
|
86
94
|
|
@@ -96,7 +104,7 @@
|
|
96
104
|
|
97
105
|
model.add(Conv2D(16, (3, 3),
|
98
106
|
|
99
|
-
input_shape=(150, 150,
|
107
|
+
input_shape=(150, 150, 4), activation='relu'))
|
100
108
|
|
101
109
|
model.add(Conv2D(32, (3, 3), activation='relu'))
|
102
110
|
|
@@ -142,36 +150,24 @@
|
|
142
150
|
|
143
151
|
print("Computation time:{0:.3f} sec".format(time.time() - startTime))
|
144
152
|
|
153
|
+
```
|
154
|
+
|
155
|
+
|
156
|
+
|
157
|
+
のようにコードを書くと
|
158
|
+
|
145
159
|
|
146
160
|
|
147
161
|
```
|
148
162
|
|
149
|
-
|
163
|
+
---> 26 history = model.fit(X_train, y_train, batch_size=1000, epochs=20,verbose=1, validation_data=(X_test, y_test))
|
150
|
-
|
151
|
-
というエラーが出てきてしまいます。
|
152
|
-
|
153
|
-
これはどういう意味でどう解決すれば良いのでしょうか?
|
154
164
|
|
155
165
|
|
156
166
|
|
167
|
+
ValueError: Input 0 of layer sequential is incompatible with the layer: : expected min_ndim=4, found ndim=2. Full shape received: [None, 1]
|
168
|
+
|
169
|
+
```
|
157
170
|
|
158
171
|
|
159
172
|
|
160
|
-
|
161
|
-
```ValueError Traceback (most recent call last)
|
162
|
-
|
163
|
-
<ipython-input-250-ea0903ed1297> in <module>
|
164
|
-
|
165
|
-
24 startTime = time.time()
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
→ 26 history = model.fit(X_train, y_train, batch_size=1000, epochs=20,verbose=1, validation_data=(X_test, y_test))```
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
173
|
+
のようにエラーが出てしまいます。どこかおかしい場所はありますでしょうか。。。
|
5
文章修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -52,7 +52,7 @@
|
|
52
52
|
|
53
53
|
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
54
54
|
|
55
|
-
X = p1
|
55
|
+
X = np.expand_dims(p1, axis=-1)
|
56
56
|
|
57
57
|
y = np.append(y, np.array([0], dtype = np.uint8)).reshape(-1,1)
|
58
58
|
|
@@ -62,7 +62,7 @@
|
|
62
62
|
|
63
63
|
p2 =imageio.imread(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png").reshape(150,150,4)
|
64
64
|
|
65
|
-
X = p2
|
65
|
+
X = np.expand_dims(p2,axis=-1)
|
66
66
|
|
67
67
|
y = np.append(y, np.array([1], dtype = np.uint8)).reshape(-1,1)
|
68
68
|
|
@@ -146,7 +146,7 @@
|
|
146
146
|
|
147
147
|
```
|
148
148
|
|
149
|
-
``
|
149
|
+
`` ValueError: Input 0 of layer sequential_49 is incompatible with the layer: : expected min_ndim=4, found ndim=2. Full shape received: [None, 1]``
|
150
150
|
|
151
151
|
というエラーが出てきてしまいます。
|
152
152
|
|
4
文章修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -48,7 +48,7 @@
|
|
48
48
|
|
49
49
|
|
50
50
|
|
51
|
-
|
51
|
+
|
52
52
|
|
53
53
|
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
54
54
|
|
3
コードの追記
test
CHANGED
File without changes
|
test
CHANGED
@@ -142,19 +142,15 @@
|
|
142
142
|
|
143
143
|
print("Computation time:{0:.3f} sec".format(time.time() - startTime))
|
144
144
|
|
145
|
+
|
146
|
+
|
145
147
|
```
|
146
148
|
|
147
|
-
``` ValueError: Input 0 of layer sequential_38 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 150, 4]``
|
149
|
+
``` ValueError: Input 0 of layer sequential_38 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 150, 4]``
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
150
|
|
153
151
|
というエラーが出てきてしまいます。
|
154
152
|
|
155
|
-
|
156
|
-
|
157
|
-
これはどういう意味
|
153
|
+
これはどういう意味でどう解決すれば良いのでしょうか?
|
158
154
|
|
159
155
|
|
160
156
|
|
2
コードの追記
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
深層学習をしているのですが
|
1
|
+
深層学習で2つの画像を見分けるというものを実装しているのですが
|
2
2
|
|
3
3
|
|
4
4
|
|
@@ -148,8 +148,34 @@
|
|
148
148
|
|
149
149
|
|
150
150
|
|
151
|
+
|
152
|
+
|
151
153
|
というエラーが出てきてしまいます。
|
152
154
|
|
153
155
|
|
154
156
|
|
155
157
|
これはどういう意味なのでしょうか?
|
158
|
+
|
159
|
+
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
|
164
|
+
|
165
|
+
```ValueError Traceback (most recent call last)
|
166
|
+
|
167
|
+
<ipython-input-250-ea0903ed1297> in <module>
|
168
|
+
|
169
|
+
24 startTime = time.time()
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
|
174
|
+
|
175
|
+
→ 26 history = model.fit(X_train, y_train, batch_size=1000, epochs=20,verbose=1, validation_data=(X_test, y_test))```
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
|
180
|
+
|
181
|
+
ちなみにこの26行でエラーが出ていると記述されております。
|
1
コードを追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,6 +1,148 @@
|
|
1
1
|
深層学習をしているのですが
|
2
2
|
|
3
3
|
|
4
|
+
|
5
|
+
|
6
|
+
|
7
|
+
```import imageio
|
8
|
+
|
9
|
+
import numpy as np
|
10
|
+
|
11
|
+
from PIL import Image
|
12
|
+
|
13
|
+
|
14
|
+
|
15
|
+
|
16
|
+
|
17
|
+
|
18
|
+
|
19
|
+
|
20
|
+
|
21
|
+
|
22
|
+
|
23
|
+
|
24
|
+
|
25
|
+
for i in range(1, 61):
|
26
|
+
|
27
|
+
|
28
|
+
|
29
|
+
filepath = f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png"
|
30
|
+
|
31
|
+
img = Image.open(filepath)
|
32
|
+
|
33
|
+
img = img.convert("RGBA")
|
34
|
+
|
35
|
+
img.save(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png")
|
36
|
+
|
37
|
+
|
38
|
+
|
39
|
+
filepath = f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png"
|
40
|
+
|
41
|
+
img = Image.open(filepath)
|
42
|
+
|
43
|
+
img = img.convert("RGBA") ## RGBAカラーに変換
|
44
|
+
|
45
|
+
img.save(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png")
|
46
|
+
|
47
|
+
|
48
|
+
|
49
|
+
|
50
|
+
|
51
|
+
a = np.ones(4)
|
52
|
+
|
53
|
+
p1 = imageio.imread(f"/Users/K/Downloads/hifu_photos/melano/melano-{i:03d}.png").reshape(150,150,4)
|
54
|
+
|
55
|
+
X = p1
|
56
|
+
|
57
|
+
y = np.append(y, np.array([0], dtype = np.uint8)).reshape(-1,1)
|
58
|
+
|
59
|
+
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
p2 =imageio.imread(f"/Users/K/Downloads/hifu_photos/normal/normal-{i:03d}.png").reshape(150,150,4)
|
64
|
+
|
65
|
+
X = p2
|
66
|
+
|
67
|
+
y = np.append(y, np.array([1], dtype = np.uint8)).reshape(-1,1)
|
68
|
+
|
69
|
+
|
70
|
+
|
71
|
+
X_train = X[:48]
|
72
|
+
|
73
|
+
y_train = y[:48]
|
74
|
+
|
75
|
+
X_test = X[48:]
|
76
|
+
|
77
|
+
y_test = y[48:]
|
78
|
+
|
79
|
+
print(X_train.shape)
|
80
|
+
|
81
|
+
|
82
|
+
|
83
|
+
from keras.models import Sequential
|
84
|
+
|
85
|
+
from keras.layers import Dense, Dropout, Flatten
|
86
|
+
|
87
|
+
from keras.layers import Conv2D, MaxPooling2D
|
88
|
+
|
89
|
+
from keras.optimizers import Adam
|
90
|
+
|
91
|
+
import time
|
92
|
+
|
93
|
+
|
94
|
+
|
95
|
+
model = Sequential()
|
96
|
+
|
97
|
+
model.add(Conv2D(16, (3, 3),
|
98
|
+
|
99
|
+
input_shape=(150, 150, 3), activation='relu'))
|
100
|
+
|
101
|
+
model.add(Conv2D(32, (3, 3), activation='relu'))
|
102
|
+
|
103
|
+
model.add(MaxPooling2D(pool_size=(2, 2))) # (A)
|
104
|
+
|
105
|
+
model.add(Conv2D(64, (3, 3), activation='relu'))
|
106
|
+
|
107
|
+
model.add(MaxPooling2D(pool_size=(2, 2))) # (B)
|
108
|
+
|
109
|
+
model.add(Dropout(0.25)) # (C)
|
110
|
+
|
111
|
+
model.add(Flatten())
|
112
|
+
|
113
|
+
model.add(Dense(128, activation='relu'))
|
114
|
+
|
115
|
+
model.add(Dropout(0.25)) # (D)
|
116
|
+
|
117
|
+
model.add(Dense(2, activation='softmax'))
|
118
|
+
|
119
|
+
|
120
|
+
|
121
|
+
model.compile(loss='categorical_crossentropy',
|
122
|
+
|
123
|
+
optimizer=Adam(),
|
124
|
+
|
125
|
+
metrics=['accuracy'])
|
126
|
+
|
127
|
+
|
128
|
+
|
129
|
+
startTime = time.time()
|
130
|
+
|
131
|
+
|
132
|
+
|
133
|
+
history = model.fit(X_train, y_train, batch_size=1000, epochs=20,verbose=1, validation_data=(X_test, y_test))
|
134
|
+
|
135
|
+
|
136
|
+
|
137
|
+
|
138
|
+
|
139
|
+
loss, accuracy = model.evaluate(X_test, y_test)
|
140
|
+
|
141
|
+
print("loss:{} accuracy:{}".format(loss, accuracy))
|
142
|
+
|
143
|
+
print("Computation time:{0:.3f} sec".format(time.time() - startTime))
|
144
|
+
|
145
|
+
```
|
4
146
|
|
5
147
|
``` ValueError: Input 0 of layer sequential_38 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 150, 4]```
|
6
148
|
|