質問編集履歴
1
Stacktraceを追加しました
title
CHANGED
File without changes
|
body
CHANGED
@@ -81,7 +81,72 @@
|
|
81
81
|
scheduler.step()
|
82
82
|
print(f"epoch {str(epoch).zfill(2)}\ttrain_loss: {train_loss}\tval_loss: {val_loss}\tval_acc: {val_acc}")
|
83
83
|
|
84
|
+
##以下出現したエラー
|
85
|
+
---------------------------------------------------------------------------
|
86
|
+
RuntimeError Traceback (most recent call last)
|
87
|
+
<ipython-input-8-2396f00cf9e1> in <module>()
|
88
|
+
3 earlystop_counter = 0
|
89
|
+
4 for epoch in range(100):
|
90
|
+
----> 5 train_loss = training(model, train_dataset, optimizer, loss_func)
|
91
|
+
6 val_loss, val_acc = evaluation(model, val_dataset, loss_func)
|
92
|
+
7
|
93
|
+
|
94
|
+
6 frames
|
95
|
+
<ipython-input-6-33676f519731> in training(model, dataset, optimizer, loss_func)
|
96
|
+
6 img = img.to("cuda")
|
97
|
+
7 target = target.to("cuda")
|
98
|
+
----> 8 pred = model(img)
|
99
|
+
9 loss = loss_func(pred, target)
|
100
|
+
10 losses.append(loss.item())
|
101
|
+
|
102
|
+
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
|
103
|
+
720 result = self._slow_forward(*input, **kwargs)
|
104
|
+
721 else:
|
105
|
+
--> 722 result = self.forward(*input, **kwargs)
|
106
|
+
723 for hook in itertools.chain(
|
107
|
+
724 _global_forward_hooks.values(),
|
108
|
+
|
109
|
+
/usr/local/lib/python3.6/dist-packages/torchvision/models/resnet.py in forward(self, x)
|
110
|
+
218
|
111
|
+
219 def forward(self, x):
|
112
|
+
--> 220 return self._forward_impl(x)
|
113
|
+
221
|
114
|
+
222
|
115
|
+
|
116
|
+
/usr/local/lib/python3.6/dist-packages/torchvision/models/resnet.py in _forward_impl(self, x)
|
117
|
+
201 def _forward_impl(self, x):
|
118
|
+
202 # See note [TorchScript super()]
|
119
|
+
--> 203 x = self.conv1(x)
|
120
|
+
204 x = self.bn1(x)
|
121
|
+
205 x = self.relu(x)
|
122
|
+
|
123
|
+
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
|
124
|
+
720 result = self._slow_forward(*input, **kwargs)
|
125
|
+
721 else:
|
126
|
+
--> 722 result = self.forward(*input, **kwargs)
|
127
|
+
723 for hook in itertools.chain(
|
128
|
+
724 _global_forward_hooks.values(),
|
129
|
+
|
130
|
+
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py in forward(self, input)
|
131
|
+
417
|
132
|
+
418 def forward(self, input: Tensor) -> Tensor:
|
133
|
+
--> 419 return self._conv_forward(input, self.weight)
|
134
|
+
420
|
135
|
+
421 class Conv3d(_ConvNd):
|
136
|
+
|
137
|
+
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight)
|
138
|
+
414 _pair(0), self.dilation, self.groups)
|
139
|
+
415 return F.conv2d(input, weight, self.bias, self.stride,
|
140
|
+
--> 416 self.padding, self.dilation, self.groups)
|
141
|
+
417
|
142
|
+
418 def forward(self, input: Tensor) -> Tensor:
|
143
|
+
|
144
|
+
RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same
|
145
|
+
|
84
146
|
```
|
85
147
|
|
86
148
|
google colabを使ってpytorchを活用したresnet34の転移学習を上記のコードで行うとしたのですが、エラーが出てしました。どなたか解決策をご教授していただけますか?
|
149
|
+
更新10/28
|
150
|
+
|
151
|
+
|
87
152
|

|