質問編集履歴
2
モデルをクラスにしたところ新たな問題が出ました
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,18 +1,16 @@
|
|
1
1
|
### 前提・実現したいこと
|
2
2
|
|
3
|
-
分類を行う人工知能を
|
3
|
+
分類を行う人工知能の出力を時系列データとして扱う人工知能モデルの開発
|
4
4
|
|
5
5
|
|
6
6
|
|
7
7
|
### 発生している問題・エラーメッセージ
|
8
8
|
|
9
|
-
|
9
|
+
モデルを連結して学習を行おうとすると下記のようなエラーが出ます
|
10
|
-
|
11
|
-
どなたか、ご助力お願いいたします
|
12
10
|
|
13
11
|
```
|
14
12
|
|
15
|
-
ValueError:
|
13
|
+
ValueError: Graph disconnected: cannot obtain value for tensor Tensor("inputs_2_:0", shape=(None, 4, 10), dtype=float32) at layer "inputs_2_". The following previous layers were accessed without issue: []
|
16
14
|
|
17
15
|
```
|
18
16
|
|
@@ -22,11 +20,183 @@
|
|
22
20
|
|
23
21
|
|
24
22
|
|
23
|
+
```constmodel
|
24
|
+
|
25
|
+
from keras.layers import Input, Dense, LSTM, Concatenate, Activation
|
26
|
+
|
27
|
+
from keras.models import Model
|
28
|
+
|
29
|
+
|
30
|
+
|
31
|
+
|
32
|
+
|
33
|
+
class Mymodel(Model):
|
34
|
+
|
35
|
+
def __init__(self, hidden_finger_size, output_finger_size, output_hand_size, hidden_LSTM_size):
|
36
|
+
|
37
|
+
self.hidden_fing = hidden_finger_size
|
38
|
+
|
39
|
+
self.output_fing = output_finger_size
|
40
|
+
|
41
|
+
self.output_hand = output_hand_size
|
42
|
+
|
43
|
+
self.hidden_lstm = hidden_LSTM_size
|
44
|
+
|
45
|
+
|
46
|
+
|
47
|
+
def static_model(self, inputs):
|
48
|
+
|
49
|
+
#input
|
50
|
+
|
51
|
+
inputs[0] = Input(shape=(12, ), name='inputs_0')
|
52
|
+
|
53
|
+
inputs[1] = Input(shape=(15, ), name='inputs_1')
|
54
|
+
|
55
|
+
inputs[2] = Input(shape=(15, ), name='inputs_2')
|
56
|
+
|
57
|
+
inputs[3] = Input(shape=(15, ), name='inputs_3')
|
58
|
+
|
59
|
+
inputs[4] = Input(shape=(15, ), name='inputs_4')
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
#dense_1
|
64
|
+
|
65
|
+
dense_1_0 = Dense(self.hidden_fing, name='dense_1_0')(inputs[0])
|
66
|
+
|
67
|
+
dense_1_1 = Dense(self.hidden_fing, name='dense_1_1')(inputs[1])
|
68
|
+
|
69
|
+
dense_1_2 = Dense(self.hidden_fing, name='dense_1_2')(inputs[2])
|
70
|
+
|
71
|
+
dense_1_3 = Dense(self.hidden_fing, name='dense_1_3')(inputs[3])
|
72
|
+
|
73
|
+
dense_1_4 = Dense(self.hidden_fing, name='dense_1_4')(inputs[4])
|
74
|
+
|
75
|
+
|
76
|
+
|
77
|
+
#activate_1
|
78
|
+
|
79
|
+
activation_1_0 = Activation(activation='sigmoid', name='activation_1_0')(dense_1_0)
|
80
|
+
|
81
|
+
activation_1_1 = Activation(activation='sigmoid', name='activation_1_1')(dense_1_1)
|
82
|
+
|
83
|
+
activation_1_2 = Activation(activation='sigmoid', name='activation_1_2')(dense_1_2)
|
84
|
+
|
85
|
+
activation_1_3 = Activation(activation='sigmoid', name='activation_1_3')(dense_1_3)
|
86
|
+
|
87
|
+
activation_1_4 = Activation(activation='sigmoid', name='activation_1_4')(dense_1_4)
|
88
|
+
|
89
|
+
|
90
|
+
|
91
|
+
#dense_2
|
92
|
+
|
93
|
+
dense_2_0 = Dense(self.output_fing, name='dense_2_0')(activation_1_0)
|
94
|
+
|
95
|
+
dense_2_1 = Dense(self.output_fing, name='dense_2_1')(activation_1_1)
|
96
|
+
|
97
|
+
dense_2_2 = Dense(self.output_fing, name='dense_2_2')(activation_1_2)
|
98
|
+
|
99
|
+
dense_2_3 = Dense(self.output_fing, name='dense_2_3')(activation_1_3)
|
100
|
+
|
101
|
+
dense_2_4 = Dense(self.output_fing, name='dense_2_4')(activation_1_4)
|
102
|
+
|
103
|
+
|
104
|
+
|
105
|
+
#activate_2
|
106
|
+
|
107
|
+
activation_2_0 = Activation(activation='sigmoid', name='activation_2_0')(dense_2_0)
|
108
|
+
|
109
|
+
activation_2_1 = Activation(activation='sigmoid', name='activation_2_1')(dense_2_1)
|
110
|
+
|
111
|
+
activation_2_2 = Activation(activation='sigmoid', name='activation_2_2')(dense_2_2)
|
112
|
+
|
113
|
+
activation_2_3 = Activation(activation='sigmoid', name='activation_2_3')(dense_2_3)
|
114
|
+
|
115
|
+
activation_2_4 = Activation(activation='sigmoid', name='activation_2_4')(dense_2_4)
|
116
|
+
|
117
|
+
|
118
|
+
|
119
|
+
#concatenate
|
120
|
+
|
121
|
+
concatenate = Concatenate()([activation_2_0, activation_2_1, activation_2_2, activation_2_3, activation_2_4])
|
122
|
+
|
123
|
+
|
124
|
+
|
125
|
+
#dense_3
|
126
|
+
|
127
|
+
dense_3_ = Dense(self.output_hand, name='dense_3_')(concatenate)
|
128
|
+
|
129
|
+
activation_3_ = Activation(activation='sigmoid', name='activation_3_')(dense_3_)
|
130
|
+
|
131
|
+
|
132
|
+
|
133
|
+
return activation_3_
|
134
|
+
|
135
|
+
|
136
|
+
|
137
|
+
def dynamic_model(self, inputs):
|
138
|
+
|
139
|
+
inputs_2_ = Input(shape=(4, 10, ), name='inputs_2_')
|
140
|
+
|
141
|
+
|
142
|
+
|
143
|
+
lstm_0 = LSTM(self.hidden_lstm, activation='sigmoid', name='lstm_0')(inputs_2_)
|
144
|
+
|
145
|
+
dense_4_ = Dense(self.output_hand, name='dense_4_')(lstm_0)
|
146
|
+
|
147
|
+
activation_4_ = Activation(activation='sigmoid', name='activation_4_')(dense_4_)
|
148
|
+
|
149
|
+
|
150
|
+
|
151
|
+
return activation_4_
|
152
|
+
|
153
|
+
|
154
|
+
|
155
|
+
```
|
156
|
+
|
157
|
+
|
158
|
+
|
25
|
-
```
|
159
|
+
```train
|
160
|
+
|
161
|
+
import sys, time, csv, os
|
162
|
+
|
163
|
+
|
164
|
+
|
165
|
+
my_path = ".."
|
166
|
+
|
167
|
+
sys.path.append(my_path)
|
168
|
+
|
169
|
+
|
170
|
+
|
171
|
+
from my_dataset.load_hand import load_hand_data
|
172
|
+
|
173
|
+
from Myfunction import Myfunction
|
174
|
+
|
175
|
+
from const_model import Mymodel
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
from keras.layers import Input, Dense, LSTM, Flatten, Concatenate, Activation
|
180
|
+
|
181
|
+
from keras.models import Model
|
182
|
+
|
183
|
+
from keras.utils import plot_model
|
184
|
+
|
185
|
+
|
186
|
+
|
187
|
+
import matplotlib.pyplot as plt
|
188
|
+
|
189
|
+
import numpy as np
|
190
|
+
|
191
|
+
import tensorflow as tf
|
192
|
+
|
193
|
+
|
194
|
+
|
195
|
+
|
26
196
|
|
27
197
|
I = [12, 15, 15, 15, 15]
|
28
198
|
|
29
|
-
epochs = 1
|
199
|
+
epochs = 1
|
30
200
|
|
31
201
|
batch_size = 40
|
32
202
|
|
@@ -38,7 +208,7 @@
|
|
38
208
|
|
39
209
|
hidden_finger_size = 10 #指の中間層サイズ
|
40
210
|
|
41
|
-
output_finger_size =
|
211
|
+
output_finger_size = 5 #指の出力層サイズ
|
42
212
|
|
43
213
|
output_hand_size = 10 #手の出力層サイズ
|
44
214
|
|
@@ -46,161 +216,75 @@
|
|
46
216
|
|
47
217
|
|
48
218
|
|
219
|
+
mymodel = Mymodel(hidden_finger_size, output_finger_size, output_hand_size, hidden_LSTM_size)
|
220
|
+
|
49
221
|
func = Myfunction(batch_size)
|
50
222
|
|
51
223
|
|
52
224
|
|
225
|
+
|
226
|
+
|
53
227
|
train_x, train_t, test_x, test_t = load_hand_data(["a.txt", "i.txt", "u.txt", "e.txt", "ku.txt", "se.txt", "so.txt", "ma.txt", "ru.txt", "ya.txt"],
|
54
228
|
|
55
229
|
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
|
56
230
|
|
57
|
-
|
58
|
-
|
59
|
-
#reshape_train_data_to_batch
|
231
|
+
#reshape_train_data_to_batch
|
60
|
-
|
232
|
+
|
61
|
-
batch_x, batch_t = func.get_batch(train_x, train_t)
|
233
|
+
tr_batch_x, tr_batch_t = func.get_batch(train_x, train_t)
|
62
|
-
|
234
|
+
|
63
|
-
|
235
|
+
te_batch_x, te_batch_t = func.get_test_batch(test_x, test_t)
|
64
|
-
|
65
|
-
#batch_t = (40, 200, 10)
|
66
236
|
|
67
237
|
|
68
238
|
|
69
239
|
#train_data
|
70
240
|
|
71
|
-
h_1_0 = batch_x[:, :
|
241
|
+
h_1_0 = tr_batch_x[:, :I[0]] #親指
|
72
|
-
|
242
|
+
|
73
|
-
h_1_1 = batch_x[:,
|
243
|
+
h_1_1 = tr_batch_x[:, I[0]:I[0]+I[1]] #人差し指
|
74
|
-
|
244
|
+
|
75
|
-
h_1_2 = batch_x[:,
|
245
|
+
h_1_2 = tr_batch_x[:, I[0]+I[1]:I[0]+I[1]+I[2]] #中指
|
76
|
-
|
246
|
+
|
77
|
-
h_1_3 = batch_x[:,
|
247
|
+
h_1_3 = tr_batch_x[:, I[0]+I[1]+I[2]:I[0]+I[1]+I[2]+I[3]] #薬指
|
78
|
-
|
248
|
+
|
79
|
-
h_1_4 = batch_x[:,
|
249
|
+
h_1_4 = tr_batch_x[:, I[0]+I[1]+I[2]+I[3]:] #小指
|
80
|
-
|
81
|
-
|
82
250
|
|
83
251
|
#test_data
|
84
252
|
|
85
|
-
h_2_0 = te
|
253
|
+
h_2_0 = te_batch_x[:, :I[0]] #親指
|
86
|
-
|
254
|
+
|
87
|
-
h_2_1 = te
|
255
|
+
h_2_1 = te_batch_x[:, I[0]:I[0]+I[1]] #人差し指
|
88
|
-
|
256
|
+
|
89
|
-
h_2_2 = te
|
257
|
+
h_2_2 = te_batch_x[:, I[0]+I[1]:I[0]+I[1]+I[2]] #中指
|
90
|
-
|
258
|
+
|
91
|
-
h_2_3 = te
|
259
|
+
h_2_3 = te_batch_x[:, I[0]+I[1]+I[2]:I[0]+I[1]+I[2]+I[3]] #薬指
|
92
|
-
|
260
|
+
|
93
|
-
h_2_4 = te
|
261
|
+
h_2_4 = te_batch_x[:, I[0]+I[1]+I[2]+I[3]:] #小指
|
94
|
-
|
95
|
-
|
262
|
+
|
96
|
-
|
97
|
-
|
263
|
+
|
98
|
-
|
99
|
-
|
264
|
+
|
100
|
-
|
101
|
-
|
265
|
+
|
102
|
-
|
103
|
-
#
|
104
|
-
|
105
|
-
#
|
106
|
-
|
107
|
-
################################################################
|
108
266
|
|
109
267
|
#input
|
110
268
|
|
111
|
-
inputs_0 = Input(shape=(
|
269
|
+
inputs_0 = Input(shape=(12, ), name='inputs_0')
|
112
|
-
|
270
|
+
|
113
|
-
inputs_1 = Input(shape=(
|
271
|
+
inputs_1 = Input(shape=(15, ), name='inputs_1')
|
114
|
-
|
272
|
+
|
115
|
-
inputs_2 = Input(shape=(
|
273
|
+
inputs_2 = Input(shape=(15, ), name='inputs_2')
|
116
|
-
|
274
|
+
|
117
|
-
inputs_3 = Input(shape=(
|
275
|
+
inputs_3 = Input(shape=(15, ), name='inputs_3')
|
118
|
-
|
276
|
+
|
119
|
-
inputs_4 = Input(shape=(
|
277
|
+
inputs_4 = Input(shape=(15, ), name='inputs_4')
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
278
|
+
|
124
|
-
|
125
|
-
dense_1_0 = Dense(hidden_finger_size, name='dense_1_0')(inputs_0)
|
126
|
-
|
127
|
-
dense_1_1 = Dense(hidden_finger_size, name='dense_1_1')(inputs_1)
|
128
|
-
|
129
|
-
dense_1_2 = Dense(hidden_finger_size, name='dense_1_2')(inputs_2)
|
130
|
-
|
131
|
-
dense_1_3 = Dense(hidden_finger_size, name='dense_1_3')(inputs_3)
|
132
|
-
|
133
|
-
dense_1_4 = Dense(hidden_finger_size, name='dense_1_4')(inputs_4)
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
#activate_1
|
138
|
-
|
139
|
-
activation_1_0 = Activation(activation='sigmoid', name='activation_1_0')(dense_1_0)
|
140
|
-
|
141
|
-
activation_1_1 = Activation(activation='sigmoid', name='activation_1_1')(dense_1_1)
|
142
|
-
|
143
|
-
activation_1_2 = Activation(activation='sigmoid', name='activation_1_2')(dense_1_2)
|
144
|
-
|
145
|
-
activation_1_3 = Activation(activation='sigmoid', name='activation_1_3')(dense_1_3)
|
146
|
-
|
147
|
-
activation_1_4 = Activation(activation='sigmoid', name='activation_1_4')(dense_1_4)
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
#dense_2
|
152
|
-
|
153
|
-
dense_2_0 = Dense(output_finger_size, name='dense_2_0')(activation_1_0)
|
154
|
-
|
155
|
-
dense_2_1 = Dense(output_finger_size, name='dense_2_1')(activation_1_1)
|
156
|
-
|
157
|
-
dense_2_2 = Dense(output_finger_size, name='dense_2_2')(activation_1_2)
|
158
|
-
|
159
|
-
dense_2_3 = Dense(output_finger_size, name='dense_2_3')(activation_1_3)
|
160
|
-
|
161
|
-
dense_2_4 = Dense(output_finger_size, name='dense_2_4')(activation_1_4)
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
#activate_2
|
166
|
-
|
167
|
-
activation_2_0 = Activation(activation='sigmoid', name='activation_2_0')(dense_2_0)
|
168
|
-
|
169
|
-
activation_2_1 = Activation(activation='sigmoid', name='activation_2_1')(dense_2_1)
|
170
|
-
|
171
|
-
activation_2_2 = Activation(activation='sigmoid', name='activation_2_2')(dense_2_2)
|
172
|
-
|
173
|
-
activation_2_3 = Activation(activation='sigmoid', name='activation_2_3')(dense_2_3)
|
174
|
-
|
175
|
-
activation_2_4 = Activation(activation='sigmoid', name='activation_2_4')(dense_2_4)
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
#flatten
|
180
|
-
|
181
|
-
flatten_0 = Flatten()(activation_2_0)
|
182
|
-
|
183
|
-
flatten_1 = Flatten()(activation_2_1)
|
184
|
-
|
185
|
-
flatten_2 = Flatten()(activation_2_2)
|
186
|
-
|
187
|
-
flatten_3 = Flatten()(activation_2_3)
|
188
|
-
|
189
|
-
flatten_4 = Flatten()(activation_2_4)
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
#concatenate
|
196
|
-
|
197
|
-
|
279
|
+
inputs = [inputs_0, inputs_1, inputs_2, inputs_3, inputs_4]
|
198
|
-
|
199
|
-
|
200
|
-
|
280
|
+
|
281
|
+
|
282
|
+
|
283
|
+
|
284
|
+
|
201
|
-
|
285
|
+
static_outputs = mymodel.static_model(inputs)
|
202
|
-
|
286
|
+
|
203
|
-
d
|
287
|
+
dynamic_outputs = mymodel.dynamic_model(static_outputs)
|
204
288
|
|
205
289
|
|
206
290
|
|
@@ -208,11 +292,7 @@
|
|
208
292
|
|
209
293
|
#train
|
210
294
|
|
211
|
-
model = Model(inputs=
|
295
|
+
model = Model(inputs=inputs, outputs=dynamic_outputs)
|
212
|
-
|
213
|
-
model.summary()
|
214
|
-
|
215
|
-
|
216
296
|
|
217
297
|
model.compile(optimizer='adam',
|
218
298
|
|
@@ -220,7 +300,7 @@
|
|
220
300
|
|
221
301
|
metrics=['accuracy'])
|
222
302
|
|
223
|
-
history = model.fit([h_1_0, h_1_1, h_1_2, h_1_3, h_1_4], batch_t,
|
303
|
+
history = model.fit([h_1_0, h_1_1, h_1_2, h_1_3, h_1_4], tr_batch_t,
|
224
304
|
|
225
305
|
batch_size=batch_size,
|
226
306
|
|
@@ -228,17 +308,21 @@
|
|
228
308
|
|
229
309
|
verbose=1,
|
230
310
|
|
231
|
-
validation_data=([h_2_0, h_2_1, h_2_2, h_2_3, h_2_4], te
|
311
|
+
validation_data=([h_2_0, h_2_1, h_2_2, h_2_3, h_2_4], te_batch_t))
|
312
|
+
|
313
|
+
|
314
|
+
|
315
|
+
|
232
316
|
|
233
317
|
```
|
234
318
|
|
235
|
-
|
236
|
-
|
237
319
|
### 試したこと
|
238
320
|
|
321
|
+
前回の投稿から、モデルをクラス化しました
|
322
|
+
|
239
|
-
|
323
|
+
クラス化した一つめのモデルの方は学習まで持って行けたのですが、二つ目のモデルの方を繋げて学習を行おうとするとエラーが
|
324
|
+
|
240
|
-
|
325
|
+
出ました
|
241
|
-
|
242
326
|
|
243
327
|
### 補足情報(FW/ツールのバージョンなど)
|
244
328
|
|
1
エラー部分について追記
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,12 +1,14 @@
|
|
1
1
|
### 前提・実現したいこと
|
2
2
|
|
3
|
-
分類を行う人工知能を作成したく、kerasを使って構築をしています
|
3
|
+
分類を行う人工知能を作成したく、kerasを使って構築をしていますが、現在以下のようなエラーが発生しています
|
4
4
|
|
5
5
|
|
6
6
|
|
7
7
|
### 発生している問題・エラーメッセージ
|
8
8
|
|
9
|
-
|
9
|
+
batch_tの方をdense_3_に投げてエラーが図れているように思うのですが、原因がわかりません
|
10
|
+
|
11
|
+
どなたか、ご助力お願いいたします
|
10
12
|
|
11
13
|
```
|
12
14
|
|