質問編集履歴
2
一部修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -62,7 +62,7 @@
|
|
62
62
|
|
63
63
|
IMAGE_SIZE = 224
|
64
64
|
|
65
|
-
N_CATEGORIES = 2
|
65
|
+
N_CATEGORIES = 20
|
66
66
|
|
67
67
|
BATCH_SIZE = 64
|
68
68
|
|
1
ソースコードの追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -23,3 +23,221 @@
|
|
23
23
|
|
24
24
|
|
25
25
|
初歩的なことで申し訳ありませんがよろしくお願いいたします。
|
26
|
+
|
27
|
+
|
28
|
+
|
29
|
+
##追記
|
30
|
+
|
31
|
+
ソースコードは以下のWEBサイトを参考にしました。
|
32
|
+
|
33
|
+
・https://qiita.com/tomo_20180402/items/e8c55bdca648f4877188
|
34
|
+
|
35
|
+
・https://spjai.com/keras-fine-tuning/
|
36
|
+
|
37
|
+
|
38
|
+
|
39
|
+
```python
|
40
|
+
|
41
|
+
import os
|
42
|
+
|
43
|
+
import numpy as np
|
44
|
+
|
45
|
+
from keras.preprocessing.image import ImageDataGenerator
|
46
|
+
|
47
|
+
from keras import models
|
48
|
+
|
49
|
+
from keras import layers
|
50
|
+
|
51
|
+
from keras import optimizers
|
52
|
+
|
53
|
+
from keras.layers import Conv2D, MaxPooling2D,Input
|
54
|
+
|
55
|
+
from keras.layers import Dense, Dropout, Flatten
|
56
|
+
|
57
|
+
import matplotlib.pyplot as plt
|
58
|
+
|
59
|
+
import keras
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
IMAGE_SIZE = 224
|
64
|
+
|
65
|
+
N_CATEGORIES = 22
|
66
|
+
|
67
|
+
BATCH_SIZE = 64
|
68
|
+
|
69
|
+
NUM_EPOCHS = 20
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
train_data_dir = ''
|
74
|
+
|
75
|
+
validation_data_dir = ''
|
76
|
+
|
77
|
+
|
78
|
+
|
79
|
+
NUM_TRAINING = 80000
|
80
|
+
|
81
|
+
NUM_VALIDATION = 12000
|
82
|
+
|
83
|
+
|
84
|
+
|
85
|
+
|
86
|
+
|
87
|
+
model = models.Sequential()
|
88
|
+
|
89
|
+
model.add(layers.Conv2D(32,(3,3),activation="relu",input_shape=(224,224,3)))
|
90
|
+
|
91
|
+
model.add(layers.MaxPooling2D((2,2)))
|
92
|
+
|
93
|
+
model.add(layers.Conv2D(64,(3,3),activation="relu"))
|
94
|
+
|
95
|
+
model.add(layers.MaxPooling2D((2,2)))
|
96
|
+
|
97
|
+
model.add(layers.Conv2D(128,(3,3),activation="relu"))
|
98
|
+
|
99
|
+
model.add(layers.MaxPooling2D((2,2)))
|
100
|
+
|
101
|
+
model.add(layers.Conv2D(256,(3,3),activation="relu"))
|
102
|
+
|
103
|
+
model.add(layers.MaxPooling2D((2,2)))
|
104
|
+
|
105
|
+
|
106
|
+
|
107
|
+
|
108
|
+
|
109
|
+
model.add(layers.Flatten())
|
110
|
+
|
111
|
+
model.add(layers.Dense(128,activation="relu"))
|
112
|
+
|
113
|
+
model.add(layers.Dropout(0.5))
|
114
|
+
|
115
|
+
model.add(layers.Dense(N_CATEGORIES,activation="softmax"))
|
116
|
+
|
117
|
+
|
118
|
+
|
119
|
+
|
120
|
+
|
121
|
+
model.compile(loss='categorical_crossentropy',
|
122
|
+
|
123
|
+
optimizer=optimizers.SGD(lr=1e-4,momentum=0.9),
|
124
|
+
|
125
|
+
metrics=['acc'])
|
126
|
+
|
127
|
+
model.summary()
|
128
|
+
|
129
|
+
|
130
|
+
|
131
|
+
|
132
|
+
|
133
|
+
train_datagen = ImageDataGenerator(
|
134
|
+
|
135
|
+
rescale=1.0 / 255,
|
136
|
+
|
137
|
+
shear_range=0.2,
|
138
|
+
|
139
|
+
zoom_range=0.2,
|
140
|
+
|
141
|
+
horizontal_flip=True,
|
142
|
+
|
143
|
+
rotation_range=10)
|
144
|
+
|
145
|
+
test_datagen = ImageDataGenerator(
|
146
|
+
|
147
|
+
rescale=1.0 / 255,
|
148
|
+
|
149
|
+
)
|
150
|
+
|
151
|
+
|
152
|
+
|
153
|
+
train_generator = train_datagen.flow_from_directory(
|
154
|
+
|
155
|
+
train_data_dir,
|
156
|
+
|
157
|
+
target_size=(IMAGE_SIZE, IMAGE_SIZE),
|
158
|
+
|
159
|
+
batch_size=BATCH_SIZE,
|
160
|
+
|
161
|
+
class_mode='categorical',
|
162
|
+
|
163
|
+
shuffle=True
|
164
|
+
|
165
|
+
)
|
166
|
+
|
167
|
+
validation_generator = test_datagen.flow_from_directory(
|
168
|
+
|
169
|
+
validation_data_dir,
|
170
|
+
|
171
|
+
target_size=(IMAGE_SIZE, IMAGE_SIZE),
|
172
|
+
|
173
|
+
batch_size=BATCH_SIZE,
|
174
|
+
|
175
|
+
class_mode='categorical',
|
176
|
+
|
177
|
+
shuffle=True
|
178
|
+
|
179
|
+
)
|
180
|
+
|
181
|
+
|
182
|
+
|
183
|
+
history = model.fit_generator(train_generator,
|
184
|
+
|
185
|
+
steps_per_epoch=NUM_TRAINING//BATCH_SIZE,
|
186
|
+
|
187
|
+
epochs=NUM_EPOCHS,
|
188
|
+
|
189
|
+
verbose=1,
|
190
|
+
|
191
|
+
validation_data=validation_generator,
|
192
|
+
|
193
|
+
validation_steps=NUM_VALIDATION//BATCH_SIZE,
|
194
|
+
|
195
|
+
)
|
196
|
+
|
197
|
+
|
198
|
+
|
199
|
+
|
200
|
+
|
201
|
+
model.save('model.h5')
|
202
|
+
|
203
|
+
|
204
|
+
|
205
|
+
|
206
|
+
|
207
|
+
# グラフ描画
|
208
|
+
|
209
|
+
# Accuracy
|
210
|
+
|
211
|
+
plt.plot(range(1, NUM_EPOCHS+1), history.history['acc'], "o-")
|
212
|
+
|
213
|
+
plt.plot(range(1, NUM_EPOCHS+1), history.history['val_acc'], "o-")
|
214
|
+
|
215
|
+
plt.title('model accuracy')
|
216
|
+
|
217
|
+
plt.ylabel('accuracy') # Y軸ラベル
|
218
|
+
|
219
|
+
plt.xlabel('epoch') # X軸ラベル
|
220
|
+
|
221
|
+
plt.legend(['train', 'test'], loc='upper left')
|
222
|
+
|
223
|
+
plt.show()
|
224
|
+
|
225
|
+
# loss
|
226
|
+
|
227
|
+
plt.plot(range(1, NUM_EPOCHS+1), history.history['loss'], "o-")
|
228
|
+
|
229
|
+
plt.plot(range(1, NUM_EPOCHS+1), history.history['val_loss'], "o-")
|
230
|
+
|
231
|
+
plt.title('model loss')
|
232
|
+
|
233
|
+
plt.ylabel('loss') # Y軸ラベル
|
234
|
+
|
235
|
+
plt.xlabel('epoch') # X軸ラベル
|
236
|
+
|
237
|
+
plt.legend(['train', 'test'], loc='upper right')
|
238
|
+
|
239
|
+
plt.show()
|
240
|
+
|
241
|
+
|
242
|
+
|
243
|
+
```
|