質問編集履歴
1
プログラム(前処理)を追記しました
title
CHANGED
File without changes
|
body
CHANGED
@@ -8,7 +8,37 @@
|
|
8
8
|
28×28ピクセル、0~9が描かれた各20画像:合計200画像
|
9
9
|

|
10
10
|
|
11
|
+
■プログラム(前処理)
|
12
|
+
```
|
13
|
+
v_image = []
|
14
|
+
v_label = []
|
15
|
+
for index, name in enumerate(folder):
|
16
|
+
dir = TRAIN_PATH + "\" + name
|
17
|
+
files = glob.glob(dir + "\*.png")
|
18
|
+
print(dir)
|
19
|
+
for i, file in enumerate(files):
|
20
|
+
if COLOR_CHANNEL == 1:
|
21
|
+
img = load_img(file, color_mode = "grayscale", target_size=(INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE))
|
22
|
+
elif COLOR_CHANNEL == 3:
|
23
|
+
img = load_img(file, color_mode = "rgb", target_size=(INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE))
|
24
|
+
array = img_to_array(img)
|
25
|
+
v_image.append(array)
|
26
|
+
v_label.append(index)
|
27
|
+
v_image = np.array(v_image)
|
28
|
+
v_label = np.array(v_label)
|
29
|
+
v_image = v_image.astype('float32')
|
30
|
+
v_image = v_image / 255.0
|
31
|
+
v_label = np_utils.to_categorical(v_label, CLASS_NUM)
|
32
|
+
train_images, test_images, train_labels, test_labels = train_test_split(v_image, v_label, test_size=0.20)
|
33
|
+
train_images2 = np.squeeze(train_images)
|
34
|
+
test_images2 = np.squeeze(test_images)
|
35
|
+
print(train_images2.shape)
|
36
|
+
print(test_images2.shape)
|
37
|
+
#(160, 28, 28)
|
38
|
+
#(40, 28, 28)
|
11
39
|
|
40
|
+
```
|
41
|
+
|
12
42
|
■プログラム(モデル)
|
13
43
|
```
|
14
44
|
model = keras.Sequential([
|