質問編集履歴
3
コードの編集
test
CHANGED
File without changes
|
test
CHANGED
@@ -12,175 +12,431 @@
|
|
12
12
|
|
13
13
|
現在は以下のコードで動画検出を行っています
|
14
14
|
|
15
|
+
```python# -*- coding: utf-8 -*-
|
16
|
+
|
17
|
+
"""
|
18
|
+
|
19
|
+
Class definition of YOLO_v3 style detection model on image and video
|
20
|
+
|
21
|
+
"""
|
22
|
+
|
23
|
+
|
24
|
+
|
15
|
-
|
25
|
+
import colorsys
|
16
|
-
|
26
|
+
|
17
|
-
import s
|
27
|
+
import os
|
18
|
-
|
28
|
+
|
19
|
-
import ar
|
29
|
+
from timeit import default_timer as timer
|
30
|
+
|
31
|
+
|
20
32
|
|
21
33
|
import numpy as np
|
22
34
|
|
23
|
-
|
24
|
-
|
25
|
-
from
|
26
|
-
|
27
|
-
from
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
35
|
+
from keras import backend as K
|
36
|
+
|
37
|
+
from keras.models import load_model
|
38
|
+
|
39
|
+
from keras.layers import Input
|
40
|
+
|
41
|
+
from PIL import Image, ImageFont, ImageDraw
|
42
|
+
|
43
|
+
|
44
|
+
|
45
|
+
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
|
46
|
+
|
47
|
+
from yolo3.utils import letterbox_image
|
48
|
+
|
49
|
+
import os
|
50
|
+
|
51
|
+
from keras.utils import multi_gpu_model
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
class YOLO(object):
|
56
|
+
|
57
|
+
_defaults = {
|
58
|
+
|
59
|
+
"model_path": 'C:/Users/0000526465/keras-yolo3/logs/000/trained_weights_final.h5',
|
60
|
+
|
61
|
+
"anchors_path": 'model_data/yolo_anchors.txt',
|
62
|
+
|
63
|
+
"classes_path": 'model_data/my_classes.txt',
|
64
|
+
|
65
|
+
"score" : 0.3,
|
66
|
+
|
67
|
+
"iou" : 0.45,
|
68
|
+
|
69
|
+
"model_image_size" : (320,320),
|
70
|
+
|
71
|
+
"gpu_num" : 1,
|
72
|
+
|
73
|
+
}
|
74
|
+
|
75
|
+
|
76
|
+
|
77
|
+
@classmethod
|
78
|
+
|
79
|
+
def get_defaults(cls, n):
|
80
|
+
|
81
|
+
if n in cls._defaults:
|
82
|
+
|
83
|
+
return cls._defaults[n]
|
84
|
+
|
85
|
+
else:
|
86
|
+
|
87
|
+
return "Unrecognized attribute name '" + n + "'"
|
88
|
+
|
89
|
+
|
90
|
+
|
91
|
+
def __init__(self, **kwargs):
|
92
|
+
|
93
|
+
self.__dict__.update(self._defaults) # set up default values
|
94
|
+
|
95
|
+
self.__dict__.update(kwargs) # and update with user overrides
|
96
|
+
|
97
|
+
self.class_names = self._get_class()
|
98
|
+
|
99
|
+
self.anchors = self._get_anchors()
|
100
|
+
|
101
|
+
self.sess = K.get_session()
|
102
|
+
|
103
|
+
self.boxes, self.scores, self.classes = self.generate()
|
104
|
+
|
105
|
+
|
106
|
+
|
107
|
+
def _get_class(self):
|
108
|
+
|
109
|
+
classes_path = os.path.expanduser(self.classes_path)
|
110
|
+
|
111
|
+
with open(classes_path) as f:
|
112
|
+
|
113
|
+
class_names = f.readlines()
|
114
|
+
|
115
|
+
class_names = [c.strip() for c in class_names]
|
116
|
+
|
117
|
+
return class_names
|
118
|
+
|
119
|
+
|
120
|
+
|
121
|
+
def _get_anchors(self):
|
122
|
+
|
123
|
+
anchors_path = os.path.expanduser(self.anchors_path)
|
124
|
+
|
125
|
+
with open(anchors_path) as f:
|
126
|
+
|
127
|
+
anchors = f.readline()
|
128
|
+
|
129
|
+
anchors = [float(x) for x in anchors.split(',')]
|
130
|
+
|
131
|
+
return np.array(anchors).reshape(-1, 2)
|
132
|
+
|
133
|
+
|
134
|
+
|
135
|
+
def generate(self):
|
136
|
+
|
137
|
+
model_path = os.path.expanduser(self.model_path)
|
138
|
+
|
139
|
+
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
|
140
|
+
|
141
|
+
|
142
|
+
|
143
|
+
# Load model, or construct model and load weights.
|
144
|
+
|
145
|
+
num_anchors = len(self.anchors)
|
146
|
+
|
147
|
+
num_classes = len(self.class_names)
|
148
|
+
|
149
|
+
is_tiny_version = num_anchors==6 # default setting
|
150
|
+
|
151
|
+
try:
|
152
|
+
|
153
|
+
self.yolo_model = load_model(model_path, compile=False)
|
154
|
+
|
155
|
+
except:
|
156
|
+
|
157
|
+
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
|
158
|
+
|
159
|
+
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
|
160
|
+
|
161
|
+
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
|
162
|
+
|
163
|
+
else:
|
164
|
+
|
165
|
+
assert self.yolo_model.layers[-1].output_shape[-1] == \
|
166
|
+
|
167
|
+
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
|
168
|
+
|
169
|
+
'Mismatch between model and given anchor and class sizes'
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
print('{} model, anchors, and classes loaded.'.format(model_path))
|
174
|
+
|
175
|
+
|
176
|
+
|
177
|
+
# Generate colors for drawing bounding boxes.
|
178
|
+
|
179
|
+
hsv_tuples = [(x / len(self.class_names), 1., 1.)
|
180
|
+
|
181
|
+
for x in range(len(self.class_names))]
|
182
|
+
|
183
|
+
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
|
184
|
+
|
185
|
+
self.colors = list(
|
186
|
+
|
187
|
+
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
|
188
|
+
|
189
|
+
self.colors))
|
190
|
+
|
191
|
+
np.random.seed(10101) # Fixed seed for consistent colors across runs.
|
192
|
+
|
193
|
+
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
|
194
|
+
|
195
|
+
np.random.seed(None) # Reset seed to default.
|
196
|
+
|
197
|
+
|
198
|
+
|
199
|
+
# Generate output tensor targets for filtered bounding boxes.
|
200
|
+
|
201
|
+
self.input_image_shape = K.placeholder(shape=(2, ))
|
202
|
+
|
203
|
+
if self.gpu_num>=2:
|
204
|
+
|
205
|
+
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
|
206
|
+
|
207
|
+
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
|
208
|
+
|
209
|
+
len(self.class_names), self.input_image_shape,
|
210
|
+
|
211
|
+
score_threshold=self.score, iou_threshold=self.iou)
|
212
|
+
|
213
|
+
return boxes, scores, classes
|
214
|
+
|
215
|
+
|
216
|
+
|
217
|
+
def detect_image(self, image):
|
218
|
+
|
219
|
+
start = timer()
|
220
|
+
|
221
|
+
|
222
|
+
|
223
|
+
if self.model_image_size != (None, None):
|
224
|
+
|
225
|
+
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
|
226
|
+
|
227
|
+
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
|
228
|
+
|
229
|
+
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
|
230
|
+
|
231
|
+
else:
|
232
|
+
|
233
|
+
new_image_size = (image.width - (image.width % 32),
|
234
|
+
|
235
|
+
image.height - (image.height % 32))
|
236
|
+
|
237
|
+
boxed_image = letterbox_image(image, new_image_size)
|
238
|
+
|
239
|
+
image_data = np.array(boxed_image, dtype='float32')
|
240
|
+
|
241
|
+
|
242
|
+
|
243
|
+
print(image_data.shape)
|
244
|
+
|
245
|
+
image_data /= 255.
|
246
|
+
|
247
|
+
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
|
248
|
+
|
249
|
+
|
250
|
+
|
251
|
+
out_boxes, out_scores, out_classes = self.sess.run(
|
252
|
+
|
253
|
+
[self.boxes, self.scores, self.classes],
|
254
|
+
|
255
|
+
feed_dict={
|
256
|
+
|
257
|
+
self.yolo_model.input: image_data,
|
258
|
+
|
259
|
+
self.input_image_shape: [image.size[1], image.size[0]],
|
260
|
+
|
261
|
+
K.learning_phase(): 0
|
262
|
+
|
263
|
+
})
|
264
|
+
|
265
|
+
|
266
|
+
|
267
|
+
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
|
268
|
+
|
269
|
+
|
270
|
+
|
271
|
+
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
|
272
|
+
|
273
|
+
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
|
274
|
+
|
275
|
+
thickness = (image.size[0] + image.size[1]) // 300
|
276
|
+
|
277
|
+
|
278
|
+
|
279
|
+
for i, c in reversed(list(enumerate(out_classes))):
|
280
|
+
|
281
|
+
predicted_class = self.class_names[c]
|
282
|
+
|
283
|
+
box = out_boxes[i]
|
284
|
+
|
285
|
+
score = out_scores[i]
|
286
|
+
|
287
|
+
|
288
|
+
|
289
|
+
label = '{} {:.2f}'.format(predicted_class, score)
|
290
|
+
|
291
|
+
draw = ImageDraw.Draw(image)
|
292
|
+
|
293
|
+
label_size = draw.textsize(label, font)
|
294
|
+
|
295
|
+
|
296
|
+
|
297
|
+
top, left, bottom, right = box
|
298
|
+
|
299
|
+
top = max(0, np.floor(top + 0.5).astype('int32'))
|
300
|
+
|
301
|
+
left = max(0, np.floor(left + 0.5).astype('int32'))
|
302
|
+
|
303
|
+
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
|
304
|
+
|
305
|
+
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
|
306
|
+
|
307
|
+
print(label, (left, top), (right, bottom))
|
308
|
+
|
309
|
+
|
310
|
+
|
311
|
+
if top - label_size[1] >= 0:
|
312
|
+
|
313
|
+
text_origin = np.array([left, top - label_size[1]])
|
314
|
+
|
315
|
+
else:
|
316
|
+
|
317
|
+
text_origin = np.array([left, top + 1])
|
318
|
+
|
319
|
+
|
320
|
+
|
321
|
+
# My kingdom for a good redistributable image drawing library.
|
322
|
+
|
323
|
+
for i in range(thickness):
|
324
|
+
|
325
|
+
draw.rectangle(
|
326
|
+
|
327
|
+
[left + i, top + i, right - i, bottom - i],
|
328
|
+
|
329
|
+
outline=self.colors[c])
|
330
|
+
|
331
|
+
draw.rectangle(
|
332
|
+
|
333
|
+
[tuple(text_origin), tuple(text_origin + label_size)],
|
334
|
+
|
335
|
+
fill=self.colors[c])
|
336
|
+
|
337
|
+
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
|
338
|
+
|
339
|
+
del draw
|
340
|
+
|
341
|
+
|
342
|
+
|
343
|
+
end = timer()
|
344
|
+
|
345
|
+
print(end - start)
|
346
|
+
|
347
|
+
return image
|
348
|
+
|
349
|
+
|
350
|
+
|
351
|
+
def close_session(self):
|
352
|
+
|
353
|
+
self.sess.close()
|
354
|
+
|
355
|
+
|
356
|
+
|
357
|
+
def detect_video(yolo, video_path, output_path=""):
|
358
|
+
|
359
|
+
import cv2
|
360
|
+
|
361
|
+
vid = cv2.VideoCapture(video_path)
|
362
|
+
|
363
|
+
if not vid.isOpened():
|
364
|
+
|
365
|
+
raise IOError("Couldn't open webcam or video")
|
366
|
+
|
367
|
+
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
|
368
|
+
|
369
|
+
video_fps = vid.get(cv2.CAP_PROP_FPS)
|
370
|
+
|
371
|
+
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
372
|
+
|
373
|
+
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
|
374
|
+
|
375
|
+
isOutput = True if output_path != "" else False
|
376
|
+
|
377
|
+
if isOutput:
|
378
|
+
|
379
|
+
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
|
380
|
+
|
381
|
+
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
|
382
|
+
|
383
|
+
accum_time = 0
|
384
|
+
|
385
|
+
curr_fps = 0
|
386
|
+
|
387
|
+
fps = "FPS: ??"
|
388
|
+
|
389
|
+
prev_time = timer()
|
32
390
|
|
33
391
|
while True:
|
34
392
|
|
35
|
-
|
393
|
+
return_value, frame = vid.read()
|
36
|
-
|
37
|
-
|
394
|
+
|
38
|
-
|
39
|
-
|
395
|
+
image = Image.fromarray(frame)
|
40
|
-
|
41
|
-
|
396
|
+
|
42
|
-
|
43
|
-
print('Open Error! Try again!')
|
44
|
-
|
45
|
-
continue
|
46
|
-
|
47
|
-
else:
|
48
|
-
|
49
|
-
|
397
|
+
image = yolo.detect_image(image)
|
50
|
-
|
51
|
-
|
52
|
-
|
398
|
+
|
53
|
-
|
399
|
+
result = np.asarray(image)
|
400
|
+
|
54
|
-
|
401
|
+
curr_time = timer()
|
402
|
+
|
403
|
+
exec_time = curr_time - prev_time
|
404
|
+
|
405
|
+
prev_time = curr_time
|
406
|
+
|
407
|
+
accum_time = accum_time + exec_time
|
408
|
+
|
409
|
+
curr_fps = curr_fps + 1
|
410
|
+
|
411
|
+
if accum_time > 1:
|
412
|
+
|
413
|
+
accum_time = accum_time - 1
|
414
|
+
|
415
|
+
fps = "FPS: " + str(curr_fps)
|
416
|
+
|
55
|
-
|
417
|
+
curr_fps = 0
|
418
|
+
|
56
|
-
|
419
|
+
cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
|
420
|
+
|
421
|
+
fontScale=0.50, color=(255, 0, 0), thickness=2)
|
422
|
+
|
57
|
-
|
423
|
+
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
|
424
|
+
|
58
|
-
|
425
|
+
cv2.imshow("result", result)
|
426
|
+
|
427
|
+
if isOutput:
|
428
|
+
|
59
|
-
r
|
429
|
+
out.write(result)
|
430
|
+
|
60
|
-
|
431
|
+
if cv2.waitKey(1) & 0xFF == ord('q'):
|
432
|
+
|
61
|
-
|
433
|
+
break
|
62
434
|
|
63
435
|
yolo.close_session()
|
64
436
|
|
65
437
|
|
66
438
|
|
67
|
-
|
439
|
+
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
if __name__ == '__main__':
|
72
|
-
|
73
|
-
# class YOLO defines the default value, so suppress any default here
|
74
|
-
|
75
|
-
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
|
76
|
-
|
77
|
-
'''
|
78
|
-
|
79
|
-
Command line options
|
80
|
-
|
81
|
-
'''
|
82
|
-
|
83
|
-
parser.add_argument(
|
84
|
-
|
85
|
-
'--model', type=str,
|
86
|
-
|
87
|
-
help='path to model weight file, default ' + YOLO.get_defaults("model_path")
|
88
|
-
|
89
|
-
)
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
parser.add_argument(
|
94
|
-
|
95
|
-
'--anchors', type=str,
|
96
|
-
|
97
|
-
help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path")
|
98
|
-
|
99
|
-
)
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
parser.add_argument(
|
104
|
-
|
105
|
-
'--classes', type=str,
|
106
|
-
|
107
|
-
help='path to class definitions, default ' + YOLO.get_defaults("classes_path")
|
108
|
-
|
109
|
-
)
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
parser.add_argument(
|
114
|
-
|
115
|
-
'--gpu_num', type=int,
|
116
|
-
|
117
|
-
help='Number of GPU to use, default ' + str(YOLO.get_defaults("gpu_num"))
|
118
|
-
|
119
|
-
)
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
parser.add_argument(
|
124
|
-
|
125
|
-
'--image', default=False, action="store_true",
|
126
|
-
|
127
|
-
help='Image detection mode, will ignore all positional arguments'
|
128
|
-
|
129
|
-
)
|
130
|
-
|
131
|
-
'''
|
132
|
-
|
133
|
-
Command line positional arguments -- for video detection mode
|
134
|
-
|
135
|
-
'''
|
136
|
-
|
137
|
-
parser.add_argument(
|
138
|
-
|
139
|
-
"--input", nargs='?', type=str,required=False,default='./path2your_video',
|
140
|
-
|
141
|
-
help = "Video input path"
|
142
|
-
|
143
|
-
)
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
parser.add_argument(
|
148
|
-
|
149
|
-
"--output", nargs='?', type=str, default="",
|
150
|
-
|
151
|
-
help = "[Optional] Video output path"
|
152
|
-
|
153
|
-
)
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
FLAGS = parser.parse_args()
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
if FLAGS.image:
|
162
|
-
|
163
|
-
"""
|
164
|
-
|
165
|
-
Image detection mode, disregard any remaining command line arguments
|
166
|
-
|
167
|
-
"""
|
168
|
-
|
169
|
-
print("Image detection mode")
|
170
|
-
|
171
|
-
if "input" in FLAGS:
|
172
|
-
|
173
|
-
print(" Ignoring remaining command line arguments: " + FLAGS.input + "," + FLAGS.output)
|
174
|
-
|
175
|
-
detect_img(YOLO(**vars(FLAGS)))
|
176
|
-
|
177
|
-
elif "input" in FLAGS:
|
178
|
-
|
179
|
-
detect_video(YOLO(**vars(FLAGS)), FLAGS.input, FLAGS.output)
|
180
|
-
|
181
|
-
else:
|
182
|
-
|
183
|
-
print("Must specify at least video_input_path. See usage with --help.")
|
184
440
|
|
185
441
|
|
186
442
|
|
2
コードの修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -11,8 +11,6 @@
|
|
11
11
|
|
12
12
|
|
13
13
|
現在は以下のコードで動画検出を行っています
|
14
|
-
|
15
|
-
|
16
14
|
|
17
15
|
```python
|
18
16
|
|
@@ -183,3 +181,7 @@
|
|
183
181
|
else:
|
184
182
|
|
185
183
|
print("Must specify at least video_input_path. See usage with --help.")
|
184
|
+
|
185
|
+
|
186
|
+
|
187
|
+
```
|
1
コードの追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -7,3 +7,179 @@
|
|
7
7
|
なんとなくフレームレートの事をさしているということはわかりましたが
|
8
8
|
|
9
9
|
11とは良いのでしょうか。悪いのでしょうか。
|
10
|
+
|
11
|
+
|
12
|
+
|
13
|
+
現在は以下のコードで動画検出を行っています
|
14
|
+
|
15
|
+
|
16
|
+
|
17
|
+
```python
|
18
|
+
|
19
|
+
import sys
|
20
|
+
|
21
|
+
import argparse
|
22
|
+
|
23
|
+
import numpy as np
|
24
|
+
|
25
|
+
|
26
|
+
|
27
|
+
from yolo import YOLO, detect_video
|
28
|
+
|
29
|
+
from PIL import Image
|
30
|
+
|
31
|
+
|
32
|
+
|
33
|
+
def detect_img(yolo):
|
34
|
+
|
35
|
+
while True:
|
36
|
+
|
37
|
+
img = input('Input image filename:')
|
38
|
+
|
39
|
+
try:
|
40
|
+
|
41
|
+
image = Image.open(img)
|
42
|
+
|
43
|
+
except:
|
44
|
+
|
45
|
+
print('Open Error! Try again!')
|
46
|
+
|
47
|
+
continue
|
48
|
+
|
49
|
+
else:
|
50
|
+
|
51
|
+
r_image = yolo.detect_image(image)
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
print(type(r_image))
|
56
|
+
|
57
|
+
import cv2
|
58
|
+
|
59
|
+
cv2.imwrite("out.jpg", np.asarray(r_image)[..., ::-1])
|
60
|
+
|
61
|
+
r_image.show()
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
yolo.close_session()
|
66
|
+
|
67
|
+
|
68
|
+
|
69
|
+
FLAGS = None
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
if __name__ == '__main__':
|
74
|
+
|
75
|
+
# class YOLO defines the default value, so suppress any default here
|
76
|
+
|
77
|
+
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
|
78
|
+
|
79
|
+
'''
|
80
|
+
|
81
|
+
Command line options
|
82
|
+
|
83
|
+
'''
|
84
|
+
|
85
|
+
parser.add_argument(
|
86
|
+
|
87
|
+
'--model', type=str,
|
88
|
+
|
89
|
+
help='path to model weight file, default ' + YOLO.get_defaults("model_path")
|
90
|
+
|
91
|
+
)
|
92
|
+
|
93
|
+
|
94
|
+
|
95
|
+
parser.add_argument(
|
96
|
+
|
97
|
+
'--anchors', type=str,
|
98
|
+
|
99
|
+
help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path")
|
100
|
+
|
101
|
+
)
|
102
|
+
|
103
|
+
|
104
|
+
|
105
|
+
parser.add_argument(
|
106
|
+
|
107
|
+
'--classes', type=str,
|
108
|
+
|
109
|
+
help='path to class definitions, default ' + YOLO.get_defaults("classes_path")
|
110
|
+
|
111
|
+
)
|
112
|
+
|
113
|
+
|
114
|
+
|
115
|
+
parser.add_argument(
|
116
|
+
|
117
|
+
'--gpu_num', type=int,
|
118
|
+
|
119
|
+
help='Number of GPU to use, default ' + str(YOLO.get_defaults("gpu_num"))
|
120
|
+
|
121
|
+
)
|
122
|
+
|
123
|
+
|
124
|
+
|
125
|
+
parser.add_argument(
|
126
|
+
|
127
|
+
'--image', default=False, action="store_true",
|
128
|
+
|
129
|
+
help='Image detection mode, will ignore all positional arguments'
|
130
|
+
|
131
|
+
)
|
132
|
+
|
133
|
+
'''
|
134
|
+
|
135
|
+
Command line positional arguments -- for video detection mode
|
136
|
+
|
137
|
+
'''
|
138
|
+
|
139
|
+
parser.add_argument(
|
140
|
+
|
141
|
+
"--input", nargs='?', type=str,required=False,default='./path2your_video',
|
142
|
+
|
143
|
+
help = "Video input path"
|
144
|
+
|
145
|
+
)
|
146
|
+
|
147
|
+
|
148
|
+
|
149
|
+
parser.add_argument(
|
150
|
+
|
151
|
+
"--output", nargs='?', type=str, default="",
|
152
|
+
|
153
|
+
help = "[Optional] Video output path"
|
154
|
+
|
155
|
+
)
|
156
|
+
|
157
|
+
|
158
|
+
|
159
|
+
FLAGS = parser.parse_args()
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
if FLAGS.image:
|
164
|
+
|
165
|
+
"""
|
166
|
+
|
167
|
+
Image detection mode, disregard any remaining command line arguments
|
168
|
+
|
169
|
+
"""
|
170
|
+
|
171
|
+
print("Image detection mode")
|
172
|
+
|
173
|
+
if "input" in FLAGS:
|
174
|
+
|
175
|
+
print(" Ignoring remaining command line arguments: " + FLAGS.input + "," + FLAGS.output)
|
176
|
+
|
177
|
+
detect_img(YOLO(**vars(FLAGS)))
|
178
|
+
|
179
|
+
elif "input" in FLAGS:
|
180
|
+
|
181
|
+
detect_video(YOLO(**vars(FLAGS)), FLAGS.input, FLAGS.output)
|
182
|
+
|
183
|
+
else:
|
184
|
+
|
185
|
+
print("Must specify at least video_input_path. See usage with --help.")
|