質問編集履歴
2
誤字の修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -49,15 +49,15 @@
|
|
49
49
|
c=2.99792458*1e+8
|
50
50
|
q=1.6021766208*1e-19
|
51
51
|
|
52
|
-
pa=math.pi/2
|
52
|
+
pa=math.pi/2
|
53
53
|
sin_pa=math.sin(pa)
|
54
54
|
from sympy import *
|
55
55
|
|
56
|
-
lf1=10
|
56
|
+
lf1=10
|
57
57
|
lf2=100
|
58
58
|
lf3=1000
|
59
59
|
|
60
|
-
B1=10*1e-6*1e-4
|
60
|
+
B1=10*1e-6*1e-4
|
61
61
|
B2=100*1e-6*1e-4
|
62
62
|
|
63
63
|
omega_c1=3*lf1**2*q*B1*sin_pa/(2*m_e*c)
|
1
追記
title
CHANGED
File without changes
|
body
CHANGED
@@ -35,4 +35,218 @@
|
|
35
35
|
y = vec_A(xs,F,G,H)
|
36
36
|
|
37
37
|
```
|
38
|
-
ここから、x→ s/a1,s/a2 ~ みたいに変化させたいけど書き方の見当がつかない
|
38
|
+
ここから、x→ s/a1,s/a2 ~ みたいに変化させたいけど書き方の見当がつかない
|
39
|
+
|
40
|
+
```python
|
41
|
+
from scipy.special import kv
|
42
|
+
import matplotlib.pyplot as plt
|
43
|
+
from scipy.integrate import quad
|
44
|
+
import numpy as np
|
45
|
+
import math
|
46
|
+
from math import gamma
|
47
|
+
|
48
|
+
m_e=9.10938356*1e-31
|
49
|
+
c=2.99792458*1e+8
|
50
|
+
q=1.6021766208*1e-19
|
51
|
+
|
52
|
+
pa=math.pi/2#ピッチ角#
|
53
|
+
sin_pa=math.sin(pa)
|
54
|
+
from sympy import *
|
55
|
+
|
56
|
+
lf1=10#ローレンツ因子#
|
57
|
+
lf2=100
|
58
|
+
lf3=1000
|
59
|
+
|
60
|
+
B1=10*1e-6*1e-4#磁場#
|
61
|
+
B2=100*1e-6*1e-4
|
62
|
+
|
63
|
+
omega_c1=3*lf1**2*q*B1*sin_pa/(2*m_e*c)
|
64
|
+
omega_c2=3*lf2**2*q*B1*sin_pa/(2*m_e*c)
|
65
|
+
omega_c3=3*lf3**2*q*B1*sin_pa/(2*m_e*c)
|
66
|
+
omega_c4=3*lf1**2*q*B2*sin_pa/(2*m_e*c)
|
67
|
+
omega_c5=3*lf2**2*q*B2*sin_pa/(2*m_e*c)
|
68
|
+
omega_c6=3*lf3**2*q*B2*sin_pa/(2*m_e*c)
|
69
|
+
|
70
|
+
###################################################1#
|
71
|
+
###x→ω x=x*ω_c#
|
72
|
+
xs1 = np.linspace(1e-4*omega_c1, 1e2*omega_c1, 10000)
|
73
|
+
|
74
|
+
|
75
|
+
f = lambda z: kv(5/3,z)
|
76
|
+
F = [quad(f,x/omega_c1,np.inf)[0]*(x/omega_c1) for x in xs1]
|
77
|
+
|
78
|
+
a = gamma(1/3)
|
79
|
+
G = [(4*math.pi/np.sqrt(3)/a)*((x/omega_c1)/2)**(1/3) for x in xs1]
|
80
|
+
H = [((math.pi/2)**(1/2))*((x/omega_c1)**(1/2))*(math.exp(-(x/omega_c1)))for x in xs1]
|
81
|
+
|
82
|
+
|
83
|
+
|
84
|
+
def A(x,F,G,H):
|
85
|
+
if (x/omega_c1) <= 5.0*1e-3:
|
86
|
+
g =G
|
87
|
+
elif 5.0*1e-3 < (x/omega_c1) < 30:
|
88
|
+
g =F
|
89
|
+
elif 30 <= (x/omega_c1):
|
90
|
+
g =H
|
91
|
+
return g
|
92
|
+
|
93
|
+
vec_A = np.vectorize(A)
|
94
|
+
y = vec_A(xs1,F,G,H)
|
95
|
+
|
96
|
+
P1=(math.sqrt(3)*q**3*B1*sin_pa/(2*math.pi*m_e*c**2))*y
|
97
|
+
###################################################2#
|
98
|
+
xs2 = np.linspace(1e-4*omega_c2, 1e2*omega_c2, 10000)
|
99
|
+
|
100
|
+
|
101
|
+
f = lambda z: kv(5/3,z)
|
102
|
+
F = [quad(f,x/omega_c2,np.inf)[0]*(x/omega_c2) for x in xs2]
|
103
|
+
|
104
|
+
a = gamma(1/3)
|
105
|
+
G = [(4*math.pi/np.sqrt(3)/a)*((x/omega_c2)/2)**(1/3) for x in xs2]
|
106
|
+
H = [((math.pi/2)**(1/2))*((x/omega_c2)**(1/2))*(math.exp(-(x/omega_c2)))for x in xs2]
|
107
|
+
|
108
|
+
|
109
|
+
|
110
|
+
def A(x,F,G,H):
|
111
|
+
if (x/omega_c2) <= 5.0*1e-3:
|
112
|
+
g =G
|
113
|
+
elif 5.0*1e-3 < (x/omega_c2) < 30:
|
114
|
+
g =F
|
115
|
+
elif 30 <= (x/omega_c2):
|
116
|
+
g =H
|
117
|
+
return g
|
118
|
+
|
119
|
+
vec_A = np.vectorize(A)
|
120
|
+
y = vec_A(xs2,F,G,H)
|
121
|
+
|
122
|
+
P2=(math.sqrt(3)*q**3*B1*sin_pa/(2*math.pi*m_e*c**2))*y
|
123
|
+
###################################################3#
|
124
|
+
xs3 = np.linspace(1e-4*omega_c3, 1e2*omega_c3, 10000)
|
125
|
+
|
126
|
+
|
127
|
+
f = lambda z: kv(5/3,z)
|
128
|
+
F = [quad(f,x/omega_c3,np.inf)[0]*(x/omega_c3) for x in xs3]
|
129
|
+
|
130
|
+
a = gamma(1/3)
|
131
|
+
G = [(4*math.pi/np.sqrt(3)/a)*((x/omega_c3)/2)**(1/3) for x in xs3]
|
132
|
+
H = [((math.pi/2)**(1/2))*((x/omega_c3)**(1/2))*(math.exp(-(x/omega_c3)))for x in xs3]
|
133
|
+
|
134
|
+
|
135
|
+
|
136
|
+
def A(x,F,G,H):
|
137
|
+
if (x/omega_c3) <= 5.0*1e-3:
|
138
|
+
g =G
|
139
|
+
elif 5.0*1e-3 < (x/omega_c3) < 30:
|
140
|
+
g =F
|
141
|
+
elif 30 <= (x/omega_c3):
|
142
|
+
g =H
|
143
|
+
return g
|
144
|
+
|
145
|
+
vec_A = np.vectorize(A)
|
146
|
+
y = vec_A(xs3,F,G,H)
|
147
|
+
|
148
|
+
P3=(math.sqrt(3)*q**3*B1*sin_pa/(2*math.pi*m_e*c**2))*y
|
149
|
+
###################################################4#
|
150
|
+
xs4 = np.linspace(1e-4*omega_c4, 1e2*omega_c4, 10000)
|
151
|
+
|
152
|
+
|
153
|
+
f = lambda z: kv(5/3,z)
|
154
|
+
F = [quad(f,x/omega_c4,np.inf)[0]*(x/omega_c4) for x in xs4]
|
155
|
+
|
156
|
+
a = gamma(1/3)
|
157
|
+
G = [(4*math.pi/np.sqrt(3)/a)*((x/omega_c4)/2)**(1/3) for x in xs4]
|
158
|
+
H = [((math.pi/2)**(1/2))*((x/omega_c4)**(1/2))*(math.exp(-(x/omega_c4)))for x in xs4]
|
159
|
+
|
160
|
+
|
161
|
+
|
162
|
+
def A(x,F,G,H):
|
163
|
+
if (x/omega_c4) <= 5.0*1e-3:
|
164
|
+
g =G
|
165
|
+
elif 5.0*1e-3 < (x/omega_c4) < 30:
|
166
|
+
g =F
|
167
|
+
elif 30 <= (x/omega_c4):
|
168
|
+
g =H
|
169
|
+
return g
|
170
|
+
|
171
|
+
vec_A = np.vectorize(A)
|
172
|
+
y = vec_A(xs4,F,G,H)
|
173
|
+
|
174
|
+
P4=(math.sqrt(3)*q**3*B2*sin_pa/(2*math.pi*m_e*c**2))*y
|
175
|
+
###################################################5#
|
176
|
+
xs5 = np.linspace(1e-4*omega_c5, 1e2*omega_c5, 10000)
|
177
|
+
|
178
|
+
|
179
|
+
f = lambda z: kv(5/3,z)
|
180
|
+
F = [quad(f,x/omega_c5,np.inf)[0]*(x/omega_c5) for x in xs5]
|
181
|
+
|
182
|
+
a = gamma(1/3)
|
183
|
+
G = [(4*math.pi/np.sqrt(3)/a)*((x/omega_c5)/2)**(1/3) for x in xs5]
|
184
|
+
H = [((math.pi/2)**(1/2))*((x/omega_c5)**(1/2))*(math.exp(-(x/omega_c5)))for x in xs5]
|
185
|
+
|
186
|
+
|
187
|
+
|
188
|
+
def A(x,F,G,H):
|
189
|
+
if (x/omega_c5) <= 5.0*1e-3:
|
190
|
+
g =G
|
191
|
+
elif 5.0*1e-3 < (x/omega_c5) < 30:
|
192
|
+
g =F
|
193
|
+
elif 30 <= (x/omega_c5):
|
194
|
+
g =H
|
195
|
+
return g
|
196
|
+
|
197
|
+
vec_A = np.vectorize(A)
|
198
|
+
y = vec_A(xs5,F,G,H)
|
199
|
+
|
200
|
+
P5=(math.sqrt(3)*q**3*B2*sin_pa/(2*math.pi*m_e*c**2))*y
|
201
|
+
###################################################6#
|
202
|
+
xs6= np.linspace(1e-4*omega_c6, 1e2*omega_c6, 10000)
|
203
|
+
|
204
|
+
|
205
|
+
f = lambda z: kv(5/3,z)
|
206
|
+
F = [quad(f,x/omega_c6,np.inf)[0]*(x/omega_c6) for x in xs6]
|
207
|
+
|
208
|
+
a = gamma(1/3)
|
209
|
+
G = [(4*math.pi/np.sqrt(3)/a)*((x/omega_c6)/2)**(1/3) for x in xs6]
|
210
|
+
H = [((math.pi/2)**(1/2))*((x/omega_c6)**(1/2))*(math.exp(-(x/omega_c6)))for x in xs6]
|
211
|
+
|
212
|
+
|
213
|
+
|
214
|
+
def A(x,F,G,H):
|
215
|
+
if (x/omega_c6) <= 5.0*1e-3:
|
216
|
+
g =G
|
217
|
+
elif 5.0*1e-3 < (x/omega_c6) < 30:
|
218
|
+
g =F
|
219
|
+
elif 30 <= (x/omega_c6):
|
220
|
+
g =H
|
221
|
+
return g
|
222
|
+
|
223
|
+
vec_A = np.vectorize(A)
|
224
|
+
y = vec_A(xs6,F,G,H)
|
225
|
+
|
226
|
+
P6=(math.sqrt(3)*q**3*B2*sin_pa/(2*math.pi*m_e*c**2))*y
|
227
|
+
|
228
|
+
#####################################################
|
229
|
+
|
230
|
+
fig = plt.figure()
|
231
|
+
ax = fig.add_subplot(1,1,1)
|
232
|
+
ax.grid()
|
233
|
+
ax.set_xlim(1e-4*omega_c1, 10000*1e2*omega_c1)
|
234
|
+
ax.set_ylim(1e-3*(math.sqrt(3)*q**3*B1*sin_pa/(2*math.pi*m_e*c**2)), 100*1e0*(math.sqrt(3)*q**3*B1*sin_pa/(2*math.pi*m_e*c**2)))
|
235
|
+
ax.set_yscale('log')
|
236
|
+
ax.set_xscale('log')
|
237
|
+
ax.set_title('')
|
238
|
+
ax.set_xlabel('ω')
|
239
|
+
ax.set_ylabel('P')
|
240
|
+
ax.plot(xs1,P1,"c",label="1")
|
241
|
+
ax.plot(xs2,P2,"r",label="2")
|
242
|
+
ax.plot(xs3,P3,"g",label="3")
|
243
|
+
ax.plot(xs4,P4,"b",label="4")
|
244
|
+
ax.plot(xs5,P5,"black",label="5")
|
245
|
+
ax.plot(xs6,P6,"y",label="6")
|
246
|
+
ax.legend()
|
247
|
+
|
248
|
+
plt.show
|
249
|
+
```
|
250
|
+
上記の書き方では、狙っているような変換ができず、プロットされる。
|
251
|
+
|
252
|
+

|