質問編集履歴
2
文章の修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -16,7 +16,7 @@
|
|
16
16
|
|
17
17
|
|
18
18
|
|
19
|
-
predict.py
|
19
|
+
predict.py
|
20
20
|
|
21
21
|
```ここに言語を入力
|
22
22
|
|
1
コードの修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -14,201 +14,229 @@
|
|
14
14
|
|
15
15
|
|
16
16
|
|
17
|
+
|
18
|
+
|
17
|
-
|
19
|
+
predict.py 文字数のため、変更部分のみ記入(他部分は参照サイトと同じ)
|
18
20
|
|
19
21
|
```ここに言語を入力
|
20
22
|
|
21
|
-
|
23
|
+
|
22
|
-
|
23
|
-
|
24
|
+
|
25
|
+
|
24
26
|
|
25
27
|
from keras.models import Sequential
|
26
28
|
|
27
|
-
import
|
29
|
+
from keras.layers import Activation, Dense, Dropout
|
28
|
-
|
30
|
+
|
29
|
-
from
|
31
|
+
from keras.utils.np_utils import to_categorical
|
32
|
+
|
30
|
-
|
33
|
+
from keras.optimizers import Adagrad
|
34
|
+
|
31
|
-
from keras.p
|
35
|
+
from keras.optimizers import Adam
|
32
36
|
|
33
37
|
import numpy as np
|
34
38
|
|
35
|
-
import tensorflow as tf
|
36
|
-
|
37
|
-
import
|
39
|
+
from PIL import Image
|
38
40
|
|
39
41
|
import os
|
40
42
|
|
41
|
-
|
43
|
+
|
42
|
-
|
44
|
+
|
43
|
-
|
45
|
+
# 学習用のデータを作る.
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
46
|
+
|
48
|
-
|
49
|
-
|
47
|
+
image_list = []
|
50
|
-
|
51
|
-
|
48
|
+
|
52
|
-
|
53
|
-
session_conf = tf.compat.v1.ConfigProto(
|
54
|
-
|
55
|
-
intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
|
56
|
-
|
57
|
-
tf.set_random_seed(0)
|
58
|
-
|
59
|
-
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
|
60
|
-
|
61
|
-
K.set_session(sess)
|
62
|
-
|
63
|
-
sess = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}))
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
input_shape = (224, 224, 3)
|
68
|
-
|
69
|
-
b
|
49
|
+
label_list = []
|
70
|
-
|
71
|
-
|
50
|
+
|
72
|
-
|
51
|
+
|
52
|
+
|
73
|
-
n
|
53
|
+
# ./data/train 以下のorange,appleディレクトリ以下の画像を読み込む。
|
74
|
-
|
75
|
-
|
54
|
+
|
76
|
-
|
77
|
-
y = []
|
78
|
-
|
79
|
-
for
|
55
|
+
for dir in os.listdir("data/train"):
|
80
|
-
|
56
|
+
|
81
|
-
if
|
57
|
+
if dir == ".DS_Store":
|
82
58
|
|
83
59
|
continue
|
84
60
|
|
61
|
+
|
62
|
+
|
63
|
+
dir1 = "data/train/" + dir
|
64
|
+
|
65
|
+
label = 0
|
66
|
+
|
67
|
+
|
68
|
+
|
69
|
+
if dir == "次郎": # appleはラベル0
|
70
|
+
|
71
|
+
label = 0
|
72
|
+
|
73
|
+
elif dir == "次郎ではない": # orangeはラベル1
|
74
|
+
|
75
|
+
label = 1
|
76
|
+
|
77
|
+
|
78
|
+
|
79
|
+
for file in os.listdir(dir1):
|
80
|
+
|
81
|
+
if file != ".DS_Store":
|
82
|
+
|
83
|
+
# 配列label_listに正解ラベルを追加(りんご:0 オレンジ:1)
|
84
|
+
|
85
|
+
label_list.append(label)
|
86
|
+
|
87
|
+
filepath = dir1 + "/" + file
|
88
|
+
|
89
|
+
# 画像を25x25pixelに変換し、1要素が[R,G,B]3要素を含む配列の25x25の2次元配列として読み込む。
|
90
|
+
|
91
|
+
# [R,G,B]はそれぞれが0-255の配列。
|
92
|
+
|
93
|
+
image = np.array(Image.open(filepath).resize((25, 25)))
|
94
|
+
|
95
|
+
print(filepath)
|
96
|
+
|
97
|
+
# 配列を変換し、[[Redの配列],[Greenの配列],[Blueの配列]] のような形にする。
|
98
|
+
|
99
|
+
image = image.transpose(2, 0, 1)
|
100
|
+
|
101
|
+
# さらにフラットな1次元配列に変換。最初の1/3はRed、次がGreenの、最後がBlueの要素がフラットに並ぶ。
|
102
|
+
|
103
|
+
image = image.reshape(
|
104
|
+
|
105
|
+
1, image.shape[0] * image.shape[1] * image.shape[2]).astype("float32")[0]
|
106
|
+
|
107
|
+
# 出来上がった配列をimage_listに追加。
|
108
|
+
|
109
|
+
image_list.append(image / 255.)
|
110
|
+
|
111
|
+
|
112
|
+
|
113
|
+
# kerasに渡すためにnumpy配列に変換。
|
114
|
+
|
85
|
-
|
115
|
+
image_list = np.array(image_list)
|
116
|
+
|
117
|
+
|
118
|
+
|
86
|
-
|
119
|
+
# ラベルの配列を1と0からなるラベル配列に変更
|
120
|
+
|
121
|
+
# 0 -> [1,0], 1 -> [0,1] という感じ。
|
122
|
+
|
123
|
+
Y = to_categorical(label_list)
|
124
|
+
|
125
|
+
|
126
|
+
|
127
|
+
# モデルを生成してニューラルネットを構築
|
128
|
+
|
129
|
+
model = Sequential()
|
130
|
+
|
131
|
+
model.add(Dense(200, input_dim=1875))
|
132
|
+
|
133
|
+
model.add(Activation("relu"))
|
134
|
+
|
135
|
+
model.add(Dropout(0.2))
|
136
|
+
|
137
|
+
|
138
|
+
|
139
|
+
model.add(Dense(200))
|
140
|
+
|
141
|
+
model.add(Activation("relu"))
|
142
|
+
|
143
|
+
model.add(Dropout(0.2))
|
144
|
+
|
145
|
+
|
146
|
+
|
147
|
+
model.add(Dense(2))
|
148
|
+
|
149
|
+
model.add(Activation("softmax"))
|
150
|
+
|
151
|
+
|
152
|
+
|
153
|
+
# オプティマイザにAdamを使用
|
154
|
+
|
155
|
+
opt = Adam(lr=0.001)
|
156
|
+
|
157
|
+
# モデルをコンパイル
|
158
|
+
|
87
|
-
|
159
|
+
model.compile(loss="categorical_crossentropy",
|
160
|
+
|
88
|
-
|
161
|
+
optimizer=opt, metrics=["accuracy"])
|
162
|
+
|
163
|
+
# 学習を実行。10%はテストに使用。
|
164
|
+
|
165
|
+
model.fit(image_list, Y, nb_epoch=1500, batch_size=100, validation_split=0.1)
|
166
|
+
|
167
|
+
|
168
|
+
|
169
|
+
# テスト用ディレクトリ(./data/train/)の画像でチェック。正解率を表示する。
|
170
|
+
|
171
|
+
total = 0.
|
172
|
+
|
89
|
-
|
173
|
+
ok_count = 0.
|
90
|
-
|
174
|
+
|
175
|
+
|
176
|
+
|
91
|
-
for
|
177
|
+
for dir in os.listdir("data/train"):
|
92
|
-
|
178
|
+
|
93
|
-
if
|
179
|
+
if dir == ".DS_Store":
|
94
180
|
|
95
181
|
continue
|
96
182
|
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
m
|
128
|
-
|
129
|
-
m
|
130
|
-
|
131
|
-
m
|
132
|
-
|
133
|
-
model.
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
validation_data=(x_test, y_test))
|
156
|
-
|
157
|
-
model.save_weights('param.hdfs')
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
acc = history.history["accuracy"]
|
162
|
-
|
163
|
-
val_acc = history.history["val_accuracy"]
|
164
|
-
|
165
|
-
loss = history.history["loss"]
|
166
|
-
|
167
|
-
val_loss = history.history["val_loss"]
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
epochs = range(1, len(acc) + 1)
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
plt.plot(history.history["accuracy"], label="Training Acc")
|
176
|
-
|
177
|
-
plt.plot(history.history["val_accuracy"], label="Validation Acc")
|
178
|
-
|
179
|
-
plt.ylabel('Accuracy')
|
180
|
-
|
181
|
-
plt.xlabel('Epoch')
|
182
|
-
|
183
|
-
plt.grid()
|
184
|
-
|
185
|
-
plt.legend(['Train', 'Validation'], loc = 'upper left')
|
186
|
-
|
187
|
-
plt.savefig('acc.png')
|
188
|
-
|
189
|
-
plt.figure()
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
plt.plot(history.history["loss"], label="Training Loss")
|
194
|
-
|
195
|
-
plt.plot(history.history["val_loss"], label="Validation Loss")
|
196
|
-
|
197
|
-
plt.ylabel('Loss')
|
198
|
-
|
199
|
-
plt.xlabel('Epoch')
|
200
|
-
|
201
|
-
plt.grid()
|
202
|
-
|
203
|
-
plt.legend(['Train', 'Validation'], loc = 'upper left')
|
204
|
-
|
205
|
-
plt.savefig('loss.png')
|
206
|
-
|
207
|
-
plt.figure()
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
plt.show()
|
183
|
+
|
184
|
+
|
185
|
+
dir1 = "data/jirou-test/" + dir
|
186
|
+
|
187
|
+
label = 0
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
if dir == "次郎":
|
192
|
+
|
193
|
+
label = 0
|
194
|
+
|
195
|
+
elif dir == "次郎ではない":
|
196
|
+
|
197
|
+
label = 1
|
198
|
+
|
199
|
+
|
200
|
+
|
201
|
+
for file in os.listdir(dir1):
|
202
|
+
|
203
|
+
if file != ".DS_Store":
|
204
|
+
|
205
|
+
label_list.append(label)
|
206
|
+
|
207
|
+
filepath = dir1 + "/" + file
|
208
|
+
|
209
|
+
image = np.array(Image.open(filepath).resize((25, 25)))
|
210
|
+
|
211
|
+
print(filepath)
|
212
|
+
|
213
|
+
image = image.transpose(2, 0, 1)
|
214
|
+
|
215
|
+
image = image.reshape(
|
216
|
+
|
217
|
+
1, image.shape[0] * image.shape[1] * image.shape[2]).astype("float32")[0]
|
218
|
+
|
219
|
+
result = model.predict_classes(np.array([image / 255.]))
|
220
|
+
|
221
|
+
print("label:", label, "result:", result[0])
|
222
|
+
|
223
|
+
|
224
|
+
|
225
|
+
total += 1.
|
226
|
+
|
227
|
+
|
228
|
+
|
229
|
+
if label == result[0]:
|
230
|
+
|
231
|
+
ok_count += 1.
|
232
|
+
|
233
|
+
|
234
|
+
|
235
|
+
print("正解率: ", ok_count / total * 100, "%")
|
236
|
+
|
237
|
+
|
238
|
+
|
239
|
+
|
212
240
|
|
213
241
|
|
214
242
|
|
@@ -216,178 +244,98 @@
|
|
216
244
|
|
217
245
|
|
218
246
|
|
247
|
+
|
248
|
+
|
249
|
+
|
250
|
+
|
219
|
-
|
251
|
+
エラー文
|
220
252
|
|
221
253
|
```ここに言語を入力
|
222
254
|
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
for
|
232
|
-
|
233
|
-
|
234
|
-
|
235
|
-
|
236
|
-
|
237
|
-
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
t
|
262
|
-
|
263
|
-
ok_count
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
for
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
e
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
255
|
+
(base) xxxx@xxxx image-classfication-jiro % /opt/anaconda3/bin/python /Users/xxxx/Downloads/image-classfication-jiro/predict.py
|
256
|
+
|
257
|
+
Using TensorFlow backend.
|
258
|
+
|
259
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
260
|
+
|
261
|
+
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
|
262
|
+
|
263
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
264
|
+
|
265
|
+
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
|
266
|
+
|
267
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
268
|
+
|
269
|
+
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
|
270
|
+
|
271
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
272
|
+
|
273
|
+
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
|
274
|
+
|
275
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
276
|
+
|
277
|
+
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
|
278
|
+
|
279
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
280
|
+
|
281
|
+
np_resource = np.dtype([("resource", np.ubyte, 1)])
|
282
|
+
|
283
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
284
|
+
|
285
|
+
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
|
286
|
+
|
287
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
288
|
+
|
289
|
+
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
|
290
|
+
|
291
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
292
|
+
|
293
|
+
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
|
294
|
+
|
295
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
296
|
+
|
297
|
+
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
|
298
|
+
|
299
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
300
|
+
|
301
|
+
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
|
302
|
+
|
303
|
+
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
304
|
+
|
305
|
+
np_resource = np.dtype([("resource", np.ubyte, 1)])
|
306
|
+
|
307
|
+
data/train/not-jiro/images-3.jpeg
|
308
|
+
|
309
|
+
・・・・
|
310
|
+
|
311
|
+
data/train/jiro/hJLxemaOWndtlpzjbdVroI0DTL91CFuP.jpg
|
312
|
+
|
313
|
+
data/train/jiro/image.jpg
|
314
|
+
|
315
|
+
data/train/jiro/XHjnENbJCUCB3Xr7skOdOuq9Aoec7mlt.jpg
|
316
|
+
|
317
|
+
/Users/xxxx/Downloads/image-classfication-jiro/predict.py:70: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
|
318
|
+
|
319
|
+
model.fit(image_list, Y, nb_epoch=1500, batch_size=100, validation_split=0.1)
|
320
|
+
|
321
|
+
Traceback (most recent call last):
|
322
|
+
|
323
|
+
File "/Users/xxxxx/Downloads/image-classfication-jiro/predict.py", line 70, in <module>
|
324
|
+
|
325
|
+
model.fit(image_list, Y, nb_epoch=1500, batch_size=100, validation_split=0.1)
|
326
|
+
|
327
|
+
File "/opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 1154, in fit
|
328
|
+
|
329
|
+
batch_size=batch_size)
|
330
|
+
|
331
|
+
File "/opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 621, in _standardize_user_data
|
332
|
+
|
333
|
+
exception_prefix='target')
|
334
|
+
|
335
|
+
File "/opt/anaconda3/lib/python3.7/site-packages/keras/engine/training_utils.py", line 145, in standardize_input_data
|
336
|
+
|
337
|
+
str(data_shape))
|
338
|
+
|
339
|
+
ValueError: Error when checking target: expected activation_3 to have shape (2,) but got array with shape (1,)
|
294
340
|
|
295
341
|
```
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
エラー文
|
304
|
-
|
305
|
-
```ここに言語を入力
|
306
|
-
|
307
|
-
(base) xxxx@xxxx image-classfication-jiro % /opt/anaconda3/bin/python /Users/xxxx/Downloads/image-classfication-jiro/predict.py
|
308
|
-
|
309
|
-
Using TensorFlow backend.
|
310
|
-
|
311
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
312
|
-
|
313
|
-
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
|
314
|
-
|
315
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
316
|
-
|
317
|
-
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
|
318
|
-
|
319
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
320
|
-
|
321
|
-
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
|
322
|
-
|
323
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
324
|
-
|
325
|
-
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
|
326
|
-
|
327
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
328
|
-
|
329
|
-
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
|
330
|
-
|
331
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
332
|
-
|
333
|
-
np_resource = np.dtype([("resource", np.ubyte, 1)])
|
334
|
-
|
335
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
336
|
-
|
337
|
-
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
|
338
|
-
|
339
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
340
|
-
|
341
|
-
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
|
342
|
-
|
343
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
344
|
-
|
345
|
-
_np_qint16 = np.dtype([("qint16", np.int16, 1)])
|
346
|
-
|
347
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
348
|
-
|
349
|
-
_np_quint16 = np.dtype([("quint16", np.uint16, 1)])
|
350
|
-
|
351
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
352
|
-
|
353
|
-
_np_qint32 = np.dtype([("qint32", np.int32, 1)])
|
354
|
-
|
355
|
-
/opt/anaconda3/lib/python3.7/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
|
356
|
-
|
357
|
-
np_resource = np.dtype([("resource", np.ubyte, 1)])
|
358
|
-
|
359
|
-
data/train/not-jiro/images-3.jpeg
|
360
|
-
|
361
|
-
・・・・
|
362
|
-
|
363
|
-
data/train/jiro/hJLxemaOWndtlpzjbdVroI0DTL91CFuP.jpg
|
364
|
-
|
365
|
-
data/train/jiro/image.jpg
|
366
|
-
|
367
|
-
data/train/jiro/XHjnENbJCUCB3Xr7skOdOuq9Aoec7mlt.jpg
|
368
|
-
|
369
|
-
/Users/xxxx/Downloads/image-classfication-jiro/predict.py:70: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.
|
370
|
-
|
371
|
-
model.fit(image_list, Y, nb_epoch=1500, batch_size=100, validation_split=0.1)
|
372
|
-
|
373
|
-
Traceback (most recent call last):
|
374
|
-
|
375
|
-
File "/Users/xxxxx/Downloads/image-classfication-jiro/predict.py", line 70, in <module>
|
376
|
-
|
377
|
-
model.fit(image_list, Y, nb_epoch=1500, batch_size=100, validation_split=0.1)
|
378
|
-
|
379
|
-
File "/opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 1154, in fit
|
380
|
-
|
381
|
-
batch_size=batch_size)
|
382
|
-
|
383
|
-
File "/opt/anaconda3/lib/python3.7/site-packages/keras/engine/training.py", line 621, in _standardize_user_data
|
384
|
-
|
385
|
-
exception_prefix='target')
|
386
|
-
|
387
|
-
File "/opt/anaconda3/lib/python3.7/site-packages/keras/engine/training_utils.py", line 145, in standardize_input_data
|
388
|
-
|
389
|
-
str(data_shape))
|
390
|
-
|
391
|
-
ValueError: Error when checking target: expected activation_3 to have shape (2,) but got array with shape (1,)
|
392
|
-
|
393
|
-
```
|