teratail header banner
teratail header banner
質問するログイン新規登録

質問編集履歴

6

文字数制限

2020/07/14 07:23

投稿

koukiten
koukiten

スコア6

title CHANGED
File without changes
body CHANGED
@@ -94,24 +94,14 @@
94
94
  path_two = path +'/Dataset/two'
95
95
  path_three= path +'/Dataset/three'
96
96
  path_four = path +'/Dataset/four'
97
- path_five = path +'/Dataset/five'
98
- path_six = path +'/Dataset/six'
99
- path_seven= path +'/Dataset/seven'
100
- path_eight= path +'/Dataset/eight'
101
- path_nine = path +'/Dataset/nine'
102
- path_zero = path +'/Dataset/zero'
103
97
 
98
+
104
99
  file_1=glob.glob(path_one +'/*.jpg')
105
100
  file_2=glob.glob(path_two +'/*.jpg')
106
101
  file_3=glob.glob(path_three +'/*.jpg')
107
102
  file_4=glob.glob(path_four +'/*.jpg')
108
- file_5=glob.glob(path_five +'/*.jpg')
109
- file_6=glob.glob(path_six +'/*.jpg')
110
- file_7=glob.glob(path_seven +'/*.jpg')
111
- file_8=glob.glob(path_eight +'/*.jpg')
112
- file_9=glob.glob(path_nine +'/*.jpg')
113
- file_0=glob.glob(path_zero +'/*.jpg')
114
103
 
104
+
115
105
  print(len(file_1))
116
106
  print(len(file_2))
117
107
  print(len(file_3))
@@ -195,18 +185,7 @@
195
185
 
196
186
  load_dir_4(path_four,4)
197
187
 
198
- load_dir_5(path_five,5)
199
188
 
200
- load_dir_6(path_six,6)
201
-
202
- load_dir_7(path_seven,7)
203
-
204
- load_dir_8(path_eight,8)
205
-
206
- load_dir_9(path_nine,9)
207
-
208
- load_dir_0(path_zero,0)
209
-
210
189
  x=np.array(x)
211
190
  z=np.array(z)
212
191
 

5

書籍の改善

2020/07/14 07:23

投稿

koukiten
koukiten

スコア6

title CHANGED
File without changes
body CHANGED
@@ -112,10 +112,32 @@
112
112
  file_9=glob.glob(path_nine +'/*.jpg')
113
113
  file_0=glob.glob(path_zero +'/*.jpg')
114
114
 
115
+ print(len(file_1))
116
+ print(len(file_2))
117
+ print(len(file_3))
118
+ print(len(file_4))
119
+ print(len(file_5))
120
+ print(len(file_6))
121
+ print(len(file_7))
122
+ print(len(file_8))
123
+ print(len(file_9))
124
+ print(len(file_0))
115
125
 
126
+ #出力
127
+ 26
128
+ 20
129
+ 23
130
+ 21
131
+ 11
132
+ 19
133
+ 20
134
+ 16
135
+ 22
136
+ 22
116
137
 
117
138
 
118
139
 
140
+
119
141
  def load_dir_1(path,label):
120
142
 
121
143
  for i in file_1:
@@ -163,73 +185,8 @@
163
185
  return [x,z]
164
186
 
165
187
 
166
- def load_dir_5(path,label):
167
188
 
168
- for i in file_5:
169
- img=cv2.imread(i)
170
- img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
171
- img=cv2.resize(img,in_size)
172
- img=img/255.0
173
- x.append(img)
174
- z.append(label)
175
- return [x,z]
176
189
 
177
- def load_dir_6(path,label):
178
-
179
- for i in file_6:
180
- img=cv2.imread(i)
181
- img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
182
- img=cv2.resize(img,in_size)
183
- img=img/255.0
184
- x.append(img)
185
- z.append(label)
186
- return [x,z]
187
-
188
- def load_dir_7(path,label):
189
-
190
- for i in file_7:
191
- img=cv2.imread(i)
192
- img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
193
- img=cv2.resize(img,in_size)
194
- img=img/255.0
195
- x.append(img)
196
- z.append(label)
197
- return [x,z]
198
-
199
- def load_dir_8(path,label):
200
-
201
- for i in file_8:
202
- img=cv2.imread(i)
203
- img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
204
- img=cv2.resize(img,in_size)
205
- img=img/255.0
206
- x.append(img)
207
- z.append(label)
208
- return [x,z]
209
-
210
- def load_dir_9(path,label):
211
-
212
- for i in file_9:
213
- img=cv2.imread(i)
214
- img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
215
- img=cv2.resize(img,in_size)
216
- img=img/255.0
217
- x.append(img)
218
- z.append(label)
219
- return [x,z]
220
-
221
-
222
- def load_dir_0(path,label):
223
-
224
- for i in file_0:
225
- img=cv2.imread(i)
226
- img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
227
- img=cv2.resize(img,in_size)
228
- img=img/255.0
229
- x.append(img)
230
- z.append(label)
231
- return [x,z]
232
-
233
190
  load_dir_1(path_one,1)
234
191
 
235
192
  load_dir_2(path_two,2)

4

必要なライブラリのインポートを行った

2020/07/14 06:36

投稿

koukiten
koukiten

スコア6

title CHANGED
File without changes
body CHANGED
@@ -75,7 +75,13 @@
75
75
  import glob,os
76
76
  from sklearn.model_selection import train_test_split
77
77
  import cv2
78
+ from keras.layers import Convolution2D, BatchNormalization, Activation, MaxPooling2D, Add, Dropout, Flatten, Dense
79
+ from keras import optimizers
80
+ from keras.utils import to_categorical
78
81
 
82
+ from keras import models
83
+ from keras import layers
84
+
79
85
  x=[]
80
86
  z=[]
81
87
 
@@ -92,7 +98,7 @@
92
98
  path_six = path +'/Dataset/six'
93
99
  path_seven= path +'/Dataset/seven'
94
100
  path_eight= path +'/Dataset/eight'
95
- path_nine = path +'/Dataset/ine'
101
+ path_nine = path +'/Dataset/nine'
96
102
  path_zero = path +'/Dataset/zero'
97
103
 
98
104
  file_1=glob.glob(path_one +'/*.jpg')
@@ -155,8 +161,8 @@
155
161
  x.append(img)
156
162
  z.append(label)
157
163
  return [x,z]
158
-
159
-
164
+
165
+
160
166
  def load_dir_5(path,label):
161
167
 
162
168
  for i in file_5:
@@ -167,7 +173,7 @@
167
173
  x.append(img)
168
174
  z.append(label)
169
175
  return [x,z]
170
-
176
+
171
177
  def load_dir_6(path,label):
172
178
 
173
179
  for i in file_6:
@@ -200,7 +206,7 @@
200
206
  x.append(img)
201
207
  z.append(label)
202
208
  return [x,z]
203
-
209
+
204
210
  def load_dir_9(path,label):
205
211
 
206
212
  for i in file_9:
@@ -211,8 +217,8 @@
211
217
  x.append(img)
212
218
  z.append(label)
213
219
  return [x,z]
214
-
215
-
220
+
221
+
216
222
  def load_dir_0(path,label):
217
223
 
218
224
  for i in file_0:
@@ -275,5 +281,4 @@
275
281
  metrics=['accuracy'])
276
282
  history = model.fit(x_train, z_train, epochs=30, batch_size=32,validation_data=(x_test, z_test))
277
283
 
278
-
279
284
  ```

3

2020/07/14 06:02

投稿

koukiten
koukiten

スコア6

title CHANGED
File without changes
body CHANGED
@@ -244,7 +244,10 @@
244
244
 
245
245
  load_dir_0(path_zero,0)
246
246
 
247
+ x=np.array(x)
248
+ z=np.array(z)
247
249
 
250
+
248
251
  import keras
249
252
  x_train,x_test,z_train,z_test=train_test_split(x,z,test_size=0.2)
250
253
 

2

2020/07/14 05:51

投稿

koukiten
koukiten

スコア6

title CHANGED
File without changes
body CHANGED
@@ -224,25 +224,25 @@
224
224
  z.append(label)
225
225
  return [x,z]
226
226
 
227
- load_dir_1(path_one_speckle,1)
227
+ load_dir_1(path_one,1)
228
228
 
229
- load_dir_2(path_two_speckle,2)
229
+ load_dir_2(path_two,2)
230
230
 
231
- load_dir_3(path_three_speckle,3)
231
+ load_dir_3(path_three,3)
232
232
 
233
- load_dir_4(path_four_speckle,4)
233
+ load_dir_4(path_four,4)
234
234
 
235
- load_dir_5(path_five_speckle,5)
235
+ load_dir_5(path_five,5)
236
236
 
237
- load_dir_6(path_six_speckle,6)
237
+ load_dir_6(path_six,6)
238
238
 
239
- load_dir_7(path_seven_speckle,7)
239
+ load_dir_7(path_seven,7)
240
240
 
241
- load_dir_8(path_eight_speckle,8)
241
+ load_dir_8(path_eight,8)
242
242
 
243
- load_dir_9(path_nine_speckle,9)
243
+ load_dir_9(path_nine,9)
244
244
 
245
- load_dir_0(path_zero_speckle,0)
245
+ load_dir_0(path_zero,0)
246
246
 
247
247
 
248
248
  import keras

1

2020/07/14 05:15

投稿

koukiten
koukiten

スコア6

title CHANGED
File without changes
body CHANGED
@@ -246,10 +246,10 @@
246
246
 
247
247
 
248
248
  import keras
249
- x_train,x_test,y_train,y_test,z_train,z_test,t_train,t_test=train_test_split(x,y,z,t,test_size=0.2)
249
+ x_train,x_test,z_train,z_test=train_test_split(x,z,test_size=0.2)
250
250
 
251
- x_train=x_train.reshape(len(x_train),256,256,1).astype('float32')
251
+ x_train=x_train.reshape(len(x_train),28,28,1).astype('float32')
252
- x_test=x_test.reshape(len(x_test),256,256,1).astype('float32')
252
+ x_test=x_test.reshape(len(x_test),28,28,1).astype('float32')
253
253
 
254
254
 
255
255
  z_train=keras.utils.np_utils.to_categorical(z_train.astype('int32'),10)