質問編集履歴
6
文字数制限
title
CHANGED
File without changes
|
body
CHANGED
@@ -94,24 +94,14 @@
|
|
94
94
|
path_two = path +'/Dataset/two'
|
95
95
|
path_three= path +'/Dataset/three'
|
96
96
|
path_four = path +'/Dataset/four'
|
97
|
-
path_five = path +'/Dataset/five'
|
98
|
-
path_six = path +'/Dataset/six'
|
99
|
-
path_seven= path +'/Dataset/seven'
|
100
|
-
path_eight= path +'/Dataset/eight'
|
101
|
-
path_nine = path +'/Dataset/nine'
|
102
|
-
path_zero = path +'/Dataset/zero'
|
103
97
|
|
98
|
+
|
104
99
|
file_1=glob.glob(path_one +'/*.jpg')
|
105
100
|
file_2=glob.glob(path_two +'/*.jpg')
|
106
101
|
file_3=glob.glob(path_three +'/*.jpg')
|
107
102
|
file_4=glob.glob(path_four +'/*.jpg')
|
108
|
-
file_5=glob.glob(path_five +'/*.jpg')
|
109
|
-
file_6=glob.glob(path_six +'/*.jpg')
|
110
|
-
file_7=glob.glob(path_seven +'/*.jpg')
|
111
|
-
file_8=glob.glob(path_eight +'/*.jpg')
|
112
|
-
file_9=glob.glob(path_nine +'/*.jpg')
|
113
|
-
file_0=glob.glob(path_zero +'/*.jpg')
|
114
103
|
|
104
|
+
|
115
105
|
print(len(file_1))
|
116
106
|
print(len(file_2))
|
117
107
|
print(len(file_3))
|
@@ -195,18 +185,7 @@
|
|
195
185
|
|
196
186
|
load_dir_4(path_four,4)
|
197
187
|
|
198
|
-
load_dir_5(path_five,5)
|
199
188
|
|
200
|
-
load_dir_6(path_six,6)
|
201
|
-
|
202
|
-
load_dir_7(path_seven,7)
|
203
|
-
|
204
|
-
load_dir_8(path_eight,8)
|
205
|
-
|
206
|
-
load_dir_9(path_nine,9)
|
207
|
-
|
208
|
-
load_dir_0(path_zero,0)
|
209
|
-
|
210
189
|
x=np.array(x)
|
211
190
|
z=np.array(z)
|
212
191
|
|
5
書籍の改善
title
CHANGED
File without changes
|
body
CHANGED
@@ -112,10 +112,32 @@
|
|
112
112
|
file_9=glob.glob(path_nine +'/*.jpg')
|
113
113
|
file_0=glob.glob(path_zero +'/*.jpg')
|
114
114
|
|
115
|
+
print(len(file_1))
|
116
|
+
print(len(file_2))
|
117
|
+
print(len(file_3))
|
118
|
+
print(len(file_4))
|
119
|
+
print(len(file_5))
|
120
|
+
print(len(file_6))
|
121
|
+
print(len(file_7))
|
122
|
+
print(len(file_8))
|
123
|
+
print(len(file_9))
|
124
|
+
print(len(file_0))
|
115
125
|
|
126
|
+
#出力
|
127
|
+
26
|
128
|
+
20
|
129
|
+
23
|
130
|
+
21
|
131
|
+
11
|
132
|
+
19
|
133
|
+
20
|
134
|
+
16
|
135
|
+
22
|
136
|
+
22
|
116
137
|
|
117
138
|
|
118
139
|
|
140
|
+
|
119
141
|
def load_dir_1(path,label):
|
120
142
|
|
121
143
|
for i in file_1:
|
@@ -163,73 +185,8 @@
|
|
163
185
|
return [x,z]
|
164
186
|
|
165
187
|
|
166
|
-
def load_dir_5(path,label):
|
167
188
|
|
168
|
-
for i in file_5:
|
169
|
-
img=cv2.imread(i)
|
170
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
171
|
-
img=cv2.resize(img,in_size)
|
172
|
-
img=img/255.0
|
173
|
-
x.append(img)
|
174
|
-
z.append(label)
|
175
|
-
return [x,z]
|
176
189
|
|
177
|
-
def load_dir_6(path,label):
|
178
|
-
|
179
|
-
for i in file_6:
|
180
|
-
img=cv2.imread(i)
|
181
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
182
|
-
img=cv2.resize(img,in_size)
|
183
|
-
img=img/255.0
|
184
|
-
x.append(img)
|
185
|
-
z.append(label)
|
186
|
-
return [x,z]
|
187
|
-
|
188
|
-
def load_dir_7(path,label):
|
189
|
-
|
190
|
-
for i in file_7:
|
191
|
-
img=cv2.imread(i)
|
192
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
193
|
-
img=cv2.resize(img,in_size)
|
194
|
-
img=img/255.0
|
195
|
-
x.append(img)
|
196
|
-
z.append(label)
|
197
|
-
return [x,z]
|
198
|
-
|
199
|
-
def load_dir_8(path,label):
|
200
|
-
|
201
|
-
for i in file_8:
|
202
|
-
img=cv2.imread(i)
|
203
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
204
|
-
img=cv2.resize(img,in_size)
|
205
|
-
img=img/255.0
|
206
|
-
x.append(img)
|
207
|
-
z.append(label)
|
208
|
-
return [x,z]
|
209
|
-
|
210
|
-
def load_dir_9(path,label):
|
211
|
-
|
212
|
-
for i in file_9:
|
213
|
-
img=cv2.imread(i)
|
214
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
215
|
-
img=cv2.resize(img,in_size)
|
216
|
-
img=img/255.0
|
217
|
-
x.append(img)
|
218
|
-
z.append(label)
|
219
|
-
return [x,z]
|
220
|
-
|
221
|
-
|
222
|
-
def load_dir_0(path,label):
|
223
|
-
|
224
|
-
for i in file_0:
|
225
|
-
img=cv2.imread(i)
|
226
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
227
|
-
img=cv2.resize(img,in_size)
|
228
|
-
img=img/255.0
|
229
|
-
x.append(img)
|
230
|
-
z.append(label)
|
231
|
-
return [x,z]
|
232
|
-
|
233
190
|
load_dir_1(path_one,1)
|
234
191
|
|
235
192
|
load_dir_2(path_two,2)
|
4
必要なライブラリのインポートを行った
title
CHANGED
File without changes
|
body
CHANGED
@@ -75,7 +75,13 @@
|
|
75
75
|
import glob,os
|
76
76
|
from sklearn.model_selection import train_test_split
|
77
77
|
import cv2
|
78
|
+
from keras.layers import Convolution2D, BatchNormalization, Activation, MaxPooling2D, Add, Dropout, Flatten, Dense
|
79
|
+
from keras import optimizers
|
80
|
+
from keras.utils import to_categorical
|
78
81
|
|
82
|
+
from keras import models
|
83
|
+
from keras import layers
|
84
|
+
|
79
85
|
x=[]
|
80
86
|
z=[]
|
81
87
|
|
@@ -92,7 +98,7 @@
|
|
92
98
|
path_six = path +'/Dataset/six'
|
93
99
|
path_seven= path +'/Dataset/seven'
|
94
100
|
path_eight= path +'/Dataset/eight'
|
95
|
-
path_nine = path +'/Dataset/
|
101
|
+
path_nine = path +'/Dataset/nine'
|
96
102
|
path_zero = path +'/Dataset/zero'
|
97
103
|
|
98
104
|
file_1=glob.glob(path_one +'/*.jpg')
|
@@ -155,8 +161,8 @@
|
|
155
161
|
x.append(img)
|
156
162
|
z.append(label)
|
157
163
|
return [x,z]
|
158
|
-
|
159
|
-
|
164
|
+
|
165
|
+
|
160
166
|
def load_dir_5(path,label):
|
161
167
|
|
162
168
|
for i in file_5:
|
@@ -167,7 +173,7 @@
|
|
167
173
|
x.append(img)
|
168
174
|
z.append(label)
|
169
175
|
return [x,z]
|
170
|
-
|
176
|
+
|
171
177
|
def load_dir_6(path,label):
|
172
178
|
|
173
179
|
for i in file_6:
|
@@ -200,7 +206,7 @@
|
|
200
206
|
x.append(img)
|
201
207
|
z.append(label)
|
202
208
|
return [x,z]
|
203
|
-
|
209
|
+
|
204
210
|
def load_dir_9(path,label):
|
205
211
|
|
206
212
|
for i in file_9:
|
@@ -211,8 +217,8 @@
|
|
211
217
|
x.append(img)
|
212
218
|
z.append(label)
|
213
219
|
return [x,z]
|
214
|
-
|
215
|
-
|
220
|
+
|
221
|
+
|
216
222
|
def load_dir_0(path,label):
|
217
223
|
|
218
224
|
for i in file_0:
|
@@ -275,5 +281,4 @@
|
|
275
281
|
metrics=['accuracy'])
|
276
282
|
history = model.fit(x_train, z_train, epochs=30, batch_size=32,validation_data=(x_test, z_test))
|
277
283
|
|
278
|
-
|
279
284
|
```
|
3
title
CHANGED
File without changes
|
body
CHANGED
@@ -244,7 +244,10 @@
|
|
244
244
|
|
245
245
|
load_dir_0(path_zero,0)
|
246
246
|
|
247
|
+
x=np.array(x)
|
248
|
+
z=np.array(z)
|
247
249
|
|
250
|
+
|
248
251
|
import keras
|
249
252
|
x_train,x_test,z_train,z_test=train_test_split(x,z,test_size=0.2)
|
250
253
|
|
2
title
CHANGED
File without changes
|
body
CHANGED
@@ -224,25 +224,25 @@
|
|
224
224
|
z.append(label)
|
225
225
|
return [x,z]
|
226
226
|
|
227
|
-
load_dir_1(
|
227
|
+
load_dir_1(path_one,1)
|
228
228
|
|
229
|
-
load_dir_2(
|
229
|
+
load_dir_2(path_two,2)
|
230
230
|
|
231
|
-
load_dir_3(
|
231
|
+
load_dir_3(path_three,3)
|
232
232
|
|
233
|
-
load_dir_4(
|
233
|
+
load_dir_4(path_four,4)
|
234
234
|
|
235
|
-
load_dir_5(
|
235
|
+
load_dir_5(path_five,5)
|
236
236
|
|
237
|
-
load_dir_6(
|
237
|
+
load_dir_6(path_six,6)
|
238
238
|
|
239
|
-
load_dir_7(
|
239
|
+
load_dir_7(path_seven,7)
|
240
240
|
|
241
|
-
load_dir_8(
|
241
|
+
load_dir_8(path_eight,8)
|
242
242
|
|
243
|
-
load_dir_9(
|
243
|
+
load_dir_9(path_nine,9)
|
244
244
|
|
245
|
-
load_dir_0(
|
245
|
+
load_dir_0(path_zero,0)
|
246
246
|
|
247
247
|
|
248
248
|
import keras
|
1
title
CHANGED
File without changes
|
body
CHANGED
@@ -246,10 +246,10 @@
|
|
246
246
|
|
247
247
|
|
248
248
|
import keras
|
249
|
-
x_train,x_test,
|
249
|
+
x_train,x_test,z_train,z_test=train_test_split(x,z,test_size=0.2)
|
250
250
|
|
251
|
-
x_train=x_train.reshape(len(x_train),
|
251
|
+
x_train=x_train.reshape(len(x_train),28,28,1).astype('float32')
|
252
|
-
x_test=x_test.reshape(len(x_test),
|
252
|
+
x_test=x_test.reshape(len(x_test),28,28,1).astype('float32')
|
253
253
|
|
254
254
|
|
255
255
|
z_train=keras.utils.np_utils.to_categorical(z_train.astype('int32'),10)
|