質問編集履歴
6
コード
title
CHANGED
File without changes
|
body
CHANGED
@@ -89,7 +89,7 @@
|
|
89
89
|
marker=markers[idx],
|
90
90
|
label=c1,
|
91
91
|
edgecolor='black')
|
92
|
-
|
92
|
+
|
93
93
|
|
94
94
|
x_train_01_subset=x_train[(y_train==0)|(y_train==1)]
|
95
95
|
y_train_01_subset=y_train[(y_train==0)|(y_train==1)]
|
5
コード
title
CHANGED
File without changes
|
body
CHANGED
@@ -12,14 +12,19 @@
|
|
12
12
|
|
13
13
|
よろしくお願いします。
|
14
14
|
```pytthon
|
15
|
+
|
16
|
+
import numpy as np
|
17
|
+
from sklearn import datasets
|
18
|
+
from sklearn.model_selection import train_test_split
|
19
|
+
import matplotlib.pyplot as plt
|
20
|
+
%matplotlib inline
|
21
|
+
from matplotlib.colors import ListedColormap
|
22
|
+
|
15
23
|
iris=datasets.load_iris()
|
16
24
|
x=iris.data[:,[2,3]]
|
17
25
|
y=iris.target
|
18
26
|
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1,stratify=y)
|
19
|
-
|
27
|
+
|
20
|
-
y_train_01_subset=y_train[(y_train==0)|(y_train==1)]
|
21
|
-
lrgd=LogisticRegressionGD(eta=0.05,n_iter=1000,random_state=1)
|
22
|
-
lrgd.fit(x_train_01_subset,y_train_01_subset)
|
23
28
|
plot_decision_regions(x=x_train_01_subset,
|
24
29
|
y=y_train_01_subset,
|
25
30
|
classifier=lrgd)
|
@@ -86,8 +91,10 @@
|
|
86
91
|
edgecolor='black')
|
87
92
|
ここまでが関数です
|
88
93
|
|
89
|
-
|
94
|
+
x_train_01_subset=x_train[(y_train==0)|(y_train==1)]
|
95
|
+
y_train_01_subset=y_train[(y_train==0)|(y_train==1)]
|
90
96
|
lrgd=LogisticRegressionGD(eta=0.05,n_iter=1000,random_state=1)
|
97
|
+
lrgd.fit(x_train_01_subset,y_train_01_subset)
|
91
98
|
plot_decision_regions(x=x_train_01_subset,
|
92
99
|
y=y_train_01_subset,
|
93
100
|
classifier=lrgd)
|
4
n
title
CHANGED
File without changes
|
body
CHANGED
@@ -1,3 +1,4 @@
|
|
1
|
+

|
1
2
|
質問は決定領域のコードでこの下のコードを実行すると、
|
2
3
|
データーはプロっとされるのですが、
|
3
4
|
決定境界を表す直線が出てきません。(グラフを二つに分ける)
|
3
こーど
title
CHANGED
File without changes
|
body
CHANGED
@@ -5,12 +5,56 @@
|
|
5
5
|
間違えている箇所がわかりません。
|
6
6
|
教えてください。
|
7
7
|
plot_decision_regionsこの関数が決定領域の図です。
|
8
|
-
|
8
|
+
|
9
9
|
特徴量は2つです。
|
10
10
|
zのあたいは0か1です。
|
11
11
|
|
12
12
|
よろしくお願いします。
|
13
13
|
```pytthon
|
14
|
+
iris=datasets.load_iris()
|
15
|
+
x=iris.data[:,[2,3]]
|
16
|
+
y=iris.target
|
17
|
+
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1,stratify=y)
|
18
|
+
x_train_01_subset=x_train[(y_train==0)|(y_train==1)]
|
19
|
+
y_train_01_subset=y_train[(y_train==0)|(y_train==1)]
|
20
|
+
lrgd=LogisticRegressionGD(eta=0.05,n_iter=1000,random_state=1)
|
21
|
+
lrgd.fit(x_train_01_subset,y_train_01_subset)
|
22
|
+
plot_decision_regions(x=x_train_01_subset,
|
23
|
+
y=y_train_01_subset,
|
24
|
+
classifier=lrgd)
|
25
|
+
|
26
|
+
class LogisticRegressionGD:
|
27
|
+
def __init__(self,eta=0.05,n_iter=100,random_state=1):
|
28
|
+
self.eta=eta
|
29
|
+
self.n_iter=n_iter
|
30
|
+
self.random_state=random_state
|
31
|
+
|
32
|
+
def fit(self,x,y):
|
33
|
+
rgen=np.random.RandomState(self.random_state) #インスタンス
|
34
|
+
self.w_=rgen.normal(loc=0.0,scale=0.01,size=1+x.shape[1]) #特徴量+バイアス
|
35
|
+
self.cost_=[]
|
36
|
+
|
37
|
+
for i in range(self.n_iter):
|
38
|
+
net_input=self.net_input(x)
|
39
|
+
out_put=self.activation(net_input)
|
40
|
+
errors=(y-out_put)
|
41
|
+
self.w_[1:]+=self.eta*x.T.dot(errors)
|
42
|
+
self.w_[0]+=self.eta*errors.sum()
|
43
|
+
|
44
|
+
cost=-y.dot(np.log(out_put))-((1-y).dot(np.log(1-out_put)))
|
45
|
+
self.cost_.append(cost)
|
46
|
+
|
47
|
+
|
48
|
+
def net_input(self,x):
|
49
|
+
return np.dot(x,self.w_[1:])+self.w_[0]
|
50
|
+
|
51
|
+
def activation(self,z):
|
52
|
+
return 1./(1.+np.exp(np.clip(z,-250,250)))
|
53
|
+
|
54
|
+
def predict(self,x):
|
55
|
+
return np.where(self.activation(self.net_input(x))>=0.5,1,0)
|
56
|
+
|
57
|
+
|
14
58
|
def plot_decision_regions(x,y,classifier,test_idx=None,resolution=0.02):
|
15
59
|
|
16
60
|
|
2
コード
title
CHANGED
File without changes
|
body
CHANGED
@@ -10,15 +10,13 @@
|
|
10
10
|
zのあたいは0か1です。
|
11
11
|
|
12
12
|
よろしくお願いします。
|
13
|
-
|
13
|
+
```pytthon
|
14
|
-
|
15
|
-
|
16
14
|
def plot_decision_regions(x,y,classifier,test_idx=None,resolution=0.02):
|
17
15
|
|
18
16
|
|
19
|
-
|
17
|
+
markers=('s','x','o','^','v')
|
20
|
-
|
18
|
+
colors=('blue','red','lightgreen','gray','cyan')
|
21
|
-
|
19
|
+
cmap=ListedColormap(colors[:len(np.unique(y))])
|
22
20
|
|
23
21
|
|
24
22
|
x1_min,x1_max=x[:,0].min()-1,x[:,0].max()+1
|
@@ -47,4 +45,6 @@
|
|
47
45
|
lrgd=LogisticRegressionGD(eta=0.05,n_iter=1000,random_state=1)
|
48
46
|
plot_decision_regions(x=x_train_01_subset,
|
49
47
|
y=y_train_01_subset,
|
50
|
-
classifier=lrgd)
|
48
|
+
classifier=lrgd)
|
49
|
+
コード
|
50
|
+
```
|
1
もじ
title
CHANGED
File without changes
|
body
CHANGED
@@ -16,9 +16,9 @@
|
|
16
16
|
def plot_decision_regions(x,y,classifier,test_idx=None,resolution=0.02):
|
17
17
|
|
18
18
|
|
19
|
-
|
19
|
+
markers=('s','x','o','^','v')
|
20
|
-
|
20
|
+
colors=('blue','red','lightgreen','gray','cyan')
|
21
|
-
|
21
|
+
cmap=ListedColormap(colors[:len(np.unique(y))])
|
22
22
|
|
23
23
|
|
24
24
|
x1_min,x1_max=x[:,0].min()-1,x[:,0].max()+1
|