質問編集履歴
3
誤字
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,117 +1,3 @@
|
|
1
|
-
|
1
|
+
----------------------
|
2
2
|
|
3
|
-
|
4
|
-
|
5
|
-
csvファイルを読み込み、そこからpandasにおけるgroupby()メソッドを利用して国のコードが"JP"のみのデータの平均値をとり、それをグラフ化したいのですがgroupbyを使用するところでエラーが発生しました。
|
6
|
-
|
7
|
-
どなたか原因を教えていただきたいです。
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
3
|
+
もう一度考え直したいので白紙にさせてください
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
```
|
16
|
-
|
17
|
-
KeyError Traceback (most recent call last)
|
18
|
-
|
19
|
-
<ipython-input-10-5bf405663c72> in <module>()
|
20
|
-
|
21
|
-
20
|
22
|
-
|
23
|
-
21 import plotly_express as px
|
24
|
-
|
25
|
-
---> 22 df_melt = df.melt(id_vars='date', value_vars=["小売・娯楽", "食料品店・薬局", "公園", "乗換駅", "職場", "住宅"])
|
26
|
-
|
27
|
-
23 fig = px.line(df_melt, x="date", y="value", color='variable',
|
28
|
-
|
29
|
-
24 title="Google Mobility Report")
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
7 frames
|
34
|
-
|
35
|
-
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in _validate_read_indexer(self, key, indexer, axis, raise_missing)
|
36
|
-
|
37
|
-
1653 if not (ax.is_categorical() or ax.is_interval()):
|
38
|
-
|
39
|
-
1654 raise KeyError(
|
40
|
-
|
41
|
-
-> 1655 "Passing list-likes to .loc or [] with any missing labels "
|
42
|
-
|
43
|
-
1656 "is no longer supported, see "
|
44
|
-
|
45
|
-
1657 "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
KeyError: 'Passing list-likes to .loc or [] with any missing labels is no longer supported, see https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike'
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
```
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
### 該当のソースコード
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
```Python
|
62
|
-
|
63
|
-
import pandas as pd
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
# Google's COVID-19 Community Mobility Reports (COVID-19 コミュニティ モビリティ レポート) の読み込み
|
68
|
-
|
69
|
-
df = pd.read_csv("/content/drive/My Drive/Global_Mobility_Report.csv", encoding="utf-8")
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
df = df.rename(columns={'retail_and_recreation_percent_change_from_baseline':'小売・娯楽',
|
74
|
-
|
75
|
-
'grocery_and_pharmacy_percent_change_from_baseline': '食料品店・薬局',
|
76
|
-
|
77
|
-
'parks_percent_change_from_baseline': '公園',
|
78
|
-
|
79
|
-
'transit_stations_percent_change_from_baseline': '乗換駅',
|
80
|
-
|
81
|
-
'workplaces_percent_change_from_baseline': '職場',
|
82
|
-
|
83
|
-
'residential_percent_change_from_baseline': '住宅'})
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
# 日本のデータのみ絞り込む (# データ数 = 6240件)
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
#print(df.info())
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
grp = df.groupby('country_region_code').mean()
|
96
|
-
|
97
|
-
df = grp.query('country_region_code == "JP"')
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
import plotly_express as px
|
104
|
-
|
105
|
-
df_melt = df.melt(id_vars='date', value_vars=["小売・娯楽", "食料品店・薬局", "公園", "乗換駅", "職場", "住宅"])
|
106
|
-
|
107
|
-
fig = px.line(df_melt, x="date", y="value", color='variable',
|
108
|
-
|
109
|
-
title="Google Mobility Report")
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
fig.show()
|
116
|
-
|
117
|
-
```
|
2
文法の修正
test
CHANGED
File without changes
|
test
CHANGED
@@ -14,21 +14,41 @@
|
|
14
14
|
|
15
15
|
```
|
16
16
|
|
17
|
-
|
17
|
+
KeyError Traceback (most recent call last)
|
18
18
|
|
19
|
-
|
19
|
+
<ipython-input-10-5bf405663c72> in <module>()
|
20
20
|
|
21
|
-
|
21
|
+
20
|
22
22
|
|
23
|
-
|
23
|
+
21 import plotly_express as px
|
24
24
|
|
25
|
-
|
25
|
+
---> 22 df_melt = df.melt(id_vars='date', value_vars=["小売・娯楽", "食料品店・薬局", "公園", "乗換駅", "職場", "住宅"])
|
26
26
|
|
27
|
+
23 fig = px.line(df_melt, x="date", y="value", color='variable',
|
28
|
+
|
27
|
-
|
29
|
+
24 title="Google Mobility Report")
|
28
30
|
|
29
31
|
|
30
32
|
|
33
|
+
7 frames
|
34
|
+
|
35
|
+
/usr/local/lib/python3.6/dist-packages/pandas/core/indexing.py in _validate_read_indexer(self, key, indexer, axis, raise_missing)
|
36
|
+
|
37
|
+
1653 if not (ax.is_categorical() or ax.is_interval()):
|
38
|
+
|
31
|
-
KeyError
|
39
|
+
1654 raise KeyError(
|
40
|
+
|
41
|
+
-> 1655 "Passing list-likes to .loc or [] with any missing labels "
|
42
|
+
|
43
|
+
1656 "is no longer supported, see "
|
44
|
+
|
45
|
+
1657 "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501
|
46
|
+
|
47
|
+
|
48
|
+
|
49
|
+
KeyError: 'Passing list-likes to .loc or [] with any missing labels is no longer supported, see https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike'
|
50
|
+
|
51
|
+
|
32
52
|
|
33
53
|
```
|
34
54
|
|
@@ -66,11 +86,17 @@
|
|
66
86
|
|
67
87
|
# 日本のデータのみ絞り込む (# データ数 = 6240件)
|
68
88
|
|
89
|
+
|
90
|
+
|
69
|
-
print(df.info())
|
91
|
+
#print(df.info())
|
70
92
|
|
71
93
|
|
72
94
|
|
73
|
-
|
95
|
+
grp = df.groupby('country_region_code').mean()
|
96
|
+
|
97
|
+
df = grp.query('country_region_code == "JP"')
|
98
|
+
|
99
|
+
|
74
100
|
|
75
101
|
|
76
102
|
|
@@ -89,39 +115,3 @@
|
|
89
115
|
fig.show()
|
90
116
|
|
91
117
|
```
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
###実行結果
|
96
|
-
|
97
|
-
Data columns (total 13 columns):
|
98
|
-
|
99
|
-
Column Non-Null Count Dtype
|
100
|
-
|
101
|
-
--- ------ -------------- -----
|
102
|
-
|
103
|
-
0 country_region_code 605422 non-null object
|
104
|
-
|
105
|
-
1 country_region 606467 non-null object
|
106
|
-
|
107
|
-
2 sub_region_1 588497 non-null object
|
108
|
-
|
109
|
-
3 sub_region_2 350398 non-null object
|
110
|
-
|
111
|
-
4 iso_3166_2_code 220137 non-null object
|
112
|
-
|
113
|
-
5 census_fips_code 350532 non-null float64
|
114
|
-
|
115
|
-
6 date 606467 non-null object
|
116
|
-
|
117
|
-
7 小売・娯楽 464961 non-null float64
|
118
|
-
|
119
|
-
8 食料品店・薬局 445097 non-null float64
|
120
|
-
|
121
|
-
9 公園 276593 non-null float64
|
122
|
-
|
123
|
-
10 乗換駅 322793 non-null float64
|
124
|
-
|
125
|
-
11 職場 592165 non-null float64
|
126
|
-
|
127
|
-
12 住宅 336291 non-null float64
|
1
追記依頼の実行
test
CHANGED
File without changes
|
test
CHANGED
@@ -66,6 +66,8 @@
|
|
66
66
|
|
67
67
|
# 日本のデータのみ絞り込む (# データ数 = 6240件)
|
68
68
|
|
69
|
+
print(df.info())
|
70
|
+
|
69
71
|
|
70
72
|
|
71
73
|
df = df.groupby("JP").mean()
|
@@ -87,3 +89,39 @@
|
|
87
89
|
fig.show()
|
88
90
|
|
89
91
|
```
|
92
|
+
|
93
|
+
|
94
|
+
|
95
|
+
###実行結果
|
96
|
+
|
97
|
+
Data columns (total 13 columns):
|
98
|
+
|
99
|
+
Column Non-Null Count Dtype
|
100
|
+
|
101
|
+
--- ------ -------------- -----
|
102
|
+
|
103
|
+
0 country_region_code 605422 non-null object
|
104
|
+
|
105
|
+
1 country_region 606467 non-null object
|
106
|
+
|
107
|
+
2 sub_region_1 588497 non-null object
|
108
|
+
|
109
|
+
3 sub_region_2 350398 non-null object
|
110
|
+
|
111
|
+
4 iso_3166_2_code 220137 non-null object
|
112
|
+
|
113
|
+
5 census_fips_code 350532 non-null float64
|
114
|
+
|
115
|
+
6 date 606467 non-null object
|
116
|
+
|
117
|
+
7 小売・娯楽 464961 non-null float64
|
118
|
+
|
119
|
+
8 食料品店・薬局 445097 non-null float64
|
120
|
+
|
121
|
+
9 公園 276593 non-null float64
|
122
|
+
|
123
|
+
10 乗換駅 322793 non-null float64
|
124
|
+
|
125
|
+
11 職場 592165 non-null float64
|
126
|
+
|
127
|
+
12 住宅 336291 non-null float64
|