質問編集履歴
2
コードを修正しました。
test
CHANGED
File without changes
|
test
CHANGED
@@ -130,115 +130,127 @@
|
|
130
130
|
|
131
131
|
frame = imutils.resize(frame,width=300)
|
132
132
|
|
133
|
-
|
133
|
+
####
|
134
|
-
|
135
|
-
|
134
|
+
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
canvas = np.zeros((250, 300, 3), dtype="uint8")
|
140
|
-
|
141
|
-
|
135
|
+
prev_time = time.time()
|
136
|
+
|
142
|
-
|
137
|
+
while True:
|
138
|
+
|
139
|
+
curr_time = time.time()
|
140
|
+
|
143
|
-
if
|
141
|
+
if curr_time - prev_time >= 0.1:
|
144
|
-
|
145
|
-
faces = sorted(faces, reverse=True,
|
146
|
-
|
147
|
-
key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
|
148
|
-
|
149
|
-
(fX, fY, fW, fH) = faces
|
150
|
-
|
151
|
-
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
|
152
|
-
|
153
|
-
# the ROI for classification via the CNN
|
154
|
-
|
155
|
-
roi = gray[fY:fY + fH, fX:fX + fW]
|
156
|
-
|
157
|
-
roi = cv2.resize(roi, (64, 64))
|
158
|
-
|
159
|
-
roi = roi.astype("float") / 255.0
|
160
|
-
|
161
|
-
roi = img_to_array(roi)
|
162
|
-
|
163
|
-
roi = np.expand_dims(roi, axis=0)
|
164
142
|
|
165
143
|
|
166
144
|
|
167
|
-
|
145
|
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
146
|
+
|
168
|
-
|
147
|
+
faces = face_detection.detectMultiScale(gray,scaleFactor=1.1,minNeighbors=5,minSize=(30,30),flags=cv2.CASCADE_SCALE_IMAGE)
|
148
|
+
|
149
|
+
|
150
|
+
|
151
|
+
canvas = np.zeros((250, 300, 3), dtype="uint8")
|
152
|
+
|
153
|
+
frameClone = frame.copy()
|
154
|
+
|
155
|
+
if len(faces) > 0:
|
156
|
+
|
169
|
-
|
157
|
+
faces = sorted(faces, reverse=True,
|
170
|
-
|
158
|
+
|
171
|
-
|
159
|
+
key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
|
172
|
-
|
173
|
-
|
160
|
+
|
174
|
-
|
175
|
-
|
161
|
+
(fX, fY, fW, fH) = faces
|
176
|
-
|
177
|
-
|
162
|
+
|
178
|
-
|
179
|
-
emotion_probability = np.max(preds)
|
180
|
-
|
181
|
-
label = EMOTIONS[preds.argmax()]
|
182
|
-
|
183
|
-
###
|
184
|
-
|
185
|
-
time.sleep(1)
|
186
|
-
|
187
|
-
###
|
188
|
-
|
189
|
-
else: continue
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
163
|
+
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
|
196
|
-
|
197
|
-
|
164
|
+
|
198
|
-
|
199
|
-
text = "{}: {:.2f}%".format(emotion, prob * 100)
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
#
|
165
|
+
# the ROI for classification via the CNN
|
166
|
+
|
204
|
-
|
167
|
+
roi = gray[fY:fY + fH, fX:fX + fW]
|
168
|
+
|
169
|
+
roi = cv2.resize(roi, (64, 64))
|
170
|
+
|
171
|
+
roi = roi.astype("float") / 255.0
|
172
|
+
|
173
|
+
roi = img_to_array(roi)
|
174
|
+
|
205
|
-
|
175
|
+
roi = np.expand_dims(roi, axis=0)
|
206
|
-
|
207
|
-
|
208
176
|
|
209
177
|
|
210
178
|
|
179
|
+
|
180
|
+
|
181
|
+
preds = emotion_classifier.predict(roi)[0]
|
182
|
+
|
183
|
+
with open(filenameTXT, 'a') as f:
|
184
|
+
|
185
|
+
#print(preds)
|
186
|
+
|
187
|
+
print(preds, file=f)
|
188
|
+
|
189
|
+
emotion_probability = np.max(preds)
|
190
|
+
|
191
|
+
label = EMOTIONS[preds.argmax()]
|
192
|
+
|
193
|
+
###
|
194
|
+
|
195
|
+
time.sleep(1)
|
196
|
+
|
197
|
+
###
|
198
|
+
|
199
|
+
else: continue
|
200
|
+
|
201
|
+
|
202
|
+
|
203
|
+
|
204
|
+
|
205
|
+
for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)):
|
206
|
+
|
207
|
+
# construct the label text
|
208
|
+
|
209
|
+
text = "{}: {:.2f}%".format(emotion, prob * 100)
|
210
|
+
|
211
|
+
|
212
|
+
|
213
|
+
# draw the label + probability bar on the canvas
|
214
|
+
|
215
|
+
# emoji_face = feelings_faces[np.argmax(preds)]
|
216
|
+
|
217
|
+
|
218
|
+
|
219
|
+
|
220
|
+
|
211
|
-
w = int(prob * 300)
|
221
|
+
w = int(prob * 300)
|
212
|
-
|
222
|
+
|
213
|
-
cv2.rectangle(canvas, (7, (i * 35) + 5),
|
223
|
+
cv2.rectangle(canvas, (7, (i * 35) + 5),
|
214
|
-
|
224
|
+
|
215
|
-
(w, (i * 35) + 35), (0, 0, 255), -1)
|
225
|
+
(w, (i * 35) + 35), (0, 0, 255), -1)
|
216
|
-
|
226
|
+
|
217
|
-
cv2.putText(canvas, text, (10, (i * 35) + 23),
|
227
|
+
cv2.putText(canvas, text, (10, (i * 35) + 23),
|
218
|
-
|
228
|
+
|
219
|
-
cv2.FONT_HERSHEY_SIMPLEX, 0.45,
|
229
|
+
cv2.FONT_HERSHEY_SIMPLEX, 0.45,
|
220
|
-
|
230
|
+
|
221
|
-
(255, 255, 255), 2)
|
231
|
+
(255, 255, 255), 2)
|
222
|
-
|
232
|
+
|
223
|
-
cv2.putText(frameClone, label, (fX, fY - 10),
|
233
|
+
cv2.putText(frameClone, label, (fX, fY - 10),
|
224
|
-
|
234
|
+
|
225
|
-
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
|
235
|
+
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
|
226
|
-
|
236
|
+
|
227
|
-
cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),
|
237
|
+
cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH),
|
228
|
-
|
238
|
+
|
229
|
-
(0, 0, 255), 2)
|
239
|
+
(0, 0, 255), 2)
|
230
|
-
|
240
|
+
|
231
|
-
# for c in range(0, 3):
|
241
|
+
# for c in range(0, 3):
|
232
|
-
|
242
|
+
|
233
|
-
# frame[200:320, 10:130, c] = emoji_face[:, :, c] * \
|
243
|
+
# frame[200:320, 10:130, c] = emoji_face[:, :, c] * \
|
234
|
-
|
244
|
+
|
235
|
-
# (emoji_face[:, :, 3] / 255.0) + frame[200:320,
|
245
|
+
# (emoji_face[:, :, 3] / 255.0) + frame[200:320,
|
236
|
-
|
246
|
+
|
237
|
-
# 10:130, c] * (1.0 - emoji_face[:, :, 3] / 255.0)
|
247
|
+
# 10:130, c] * (1.0 - emoji_face[:, :, 3] / 255.0)
|
248
|
+
|
249
|
+
|
250
|
+
|
238
|
-
|
251
|
+
prev_time = curr_time
|
252
|
+
|
239
|
-
|
253
|
+
####
|
240
|
-
|
241
|
-
|
242
254
|
|
243
255
|
cv2.imshow('your_face', frameClone)
|
244
256
|
|
1
タイトルを修正しました。
test
CHANGED
@@ -1 +1 @@
|
|
1
|
-
動画を0.1秒刻みで解析したい
|
1
|
+
表情認識AIで、動画内の表情を0.1秒刻みで解析したい
|
test
CHANGED
@@ -40,6 +40,12 @@
|
|
40
40
|
|
41
41
|
|
42
42
|
|
43
|
+
下記見づらいコードですが、
|
44
|
+
|
45
|
+
何卒、よろしくお願いいたします。
|
46
|
+
|
47
|
+
|
48
|
+
|
43
49
|
### 該当のソースコード
|
44
50
|
|
45
51
|
|