質問編集履歴
3
文法の修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -21,28 +21,11 @@
|
|
21
21
|
|
22
22
|
path=os.path.dirname(os.path.abspath('__file__'))
|
23
23
|
path_one=path + '/パス/one'
|
24
|
-
|
24
|
+
|
25
|
-
path_three=path + '/パス/three'
|
26
|
-
path_four=path + '/パス/four'
|
27
|
-
path_five=path + '/パス/five'
|
28
|
-
path_six=path + '/パス/six'
|
29
|
-
path_seven=path + '/パス/seven'
|
30
|
-
path_eight=path + '/パス/eight'
|
31
|
-
path_nine=path + '/パス/nine'
|
32
|
-
path_zero=path + '/パス/zero'
|
33
25
|
in_size=(28,28)
|
34
26
|
out_size=10
|
35
27
|
|
36
28
|
file_1=glob.glob(path_one +'/*.jpg')
|
37
|
-
file_2=glob.glob(path_two +'/*.jpg')
|
38
|
-
file_3=glob.glob(path_three +'/*.jpg')
|
39
|
-
file_4=glob.glob(path_four +'/*.jpg')
|
40
|
-
file_5=glob.glob(path_five +'/*.jpg')
|
41
|
-
file_6=glob.glob(path_six +'/*.jpg')
|
42
|
-
file_7=glob.glob(path_seven +'/*.jpg')
|
43
|
-
file_8=glob.glob(path_eight +'/*.jpg')
|
44
|
-
file_9=glob.glob(path_nine +'/*.jpg')
|
45
|
-
file_0=glob.glob(path_zero +'/*.jpg')
|
46
29
|
|
47
30
|
x=[]
|
48
31
|
y=[]
|
@@ -59,128 +42,6 @@
|
|
59
42
|
|
60
43
|
return [x,y]
|
61
44
|
|
62
|
-
def load_dir_2(path,label):
|
63
|
-
|
64
|
-
for i in file_2:
|
65
|
-
img=cv2.imread(i)
|
66
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
67
|
-
img=cv2.resize(img,in_size)
|
68
|
-
img=img/255.0
|
69
|
-
x.append(img)
|
70
|
-
y.append(label)
|
71
|
-
return [x,y]
|
72
|
-
|
73
|
-
def load_dir_3(path,label):
|
74
|
-
|
75
|
-
for i in file_3:
|
76
|
-
img=cv2.imread(i)
|
77
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
78
|
-
img=cv2.resize(img,in_size)
|
79
|
-
img=img/255.0
|
80
|
-
x.append(img)
|
81
|
-
y.append(label)
|
82
|
-
return [x,y]
|
83
|
-
|
84
|
-
def load_dir_4(path,label):
|
85
|
-
|
86
|
-
for i in file_4:
|
87
|
-
img=cv2.imread(i)
|
88
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
89
|
-
img=cv2.resize(img,in_size)
|
90
|
-
img=img/255.0
|
91
|
-
x.append(img)
|
92
|
-
y.append(label)
|
93
|
-
return [x,y]
|
94
|
-
|
95
|
-
|
96
|
-
def load_dir_5(path,label):
|
97
|
-
|
98
|
-
for i in file_5:
|
99
|
-
img=cv2.imread(i)
|
100
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
101
|
-
img=cv2.resize(img,in_size)
|
102
|
-
img=img/255.0
|
103
|
-
x.append(img)
|
104
|
-
y.append(label)
|
105
|
-
return [x,y]
|
106
|
-
|
107
|
-
def load_dir_6(path,label):
|
108
|
-
|
109
|
-
for i in file_6:
|
110
|
-
img=cv2.imread(i)
|
111
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
112
|
-
img=cv2.resize(img,in_size)
|
113
|
-
img=img/255.0
|
114
|
-
x.append(img)
|
115
|
-
y.append(label)
|
116
|
-
return [x,y]
|
117
|
-
|
118
|
-
def load_dir_7(path,label):
|
119
|
-
|
120
|
-
for i in file_7:
|
121
|
-
img=cv2.imread(i)
|
122
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
123
|
-
img=cv2.resize(img,in_size)
|
124
|
-
img=img/255.0
|
125
|
-
x.append(img)
|
126
|
-
y.append(label)
|
127
|
-
return [x,y]
|
128
|
-
|
129
|
-
def load_dir_8(path,label):
|
130
|
-
|
131
|
-
for i in file_8:
|
132
|
-
img=cv2.imread(i)
|
133
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
134
|
-
img=cv2.resize(img,in_size)
|
135
|
-
img=img/255.0
|
136
|
-
x.append(img)
|
137
|
-
y.append(label)
|
138
|
-
return [x,y]
|
139
|
-
|
140
|
-
def load_dir_9(path,label):
|
141
|
-
|
142
|
-
for i in file_9:
|
143
|
-
img=cv2.imread(i)
|
144
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
145
|
-
img=cv2.resize(img,in_size)
|
146
|
-
img=img/255.0
|
147
|
-
x.append(img)
|
148
|
-
y.append(label)
|
149
|
-
return [x,y]
|
150
|
-
|
151
|
-
|
152
|
-
def load_dir_0(path,label):
|
153
|
-
|
154
|
-
for i in file_0:
|
155
|
-
img=cv2.imread(i)
|
156
|
-
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
157
|
-
img=cv2.resize(img,in_size)
|
158
|
-
img=img/255.0
|
159
|
-
x.append(img)
|
160
|
-
y.append(label)
|
161
|
-
return [x,y]
|
162
|
-
|
163
|
-
#kerasのモデルに入れられるように数値データに変換
|
164
|
-
load_dir_1(path_one,1)
|
165
|
-
|
166
|
-
load_dir_2(path_two,2)
|
167
|
-
|
168
|
-
load_dir_3(path_three,3)
|
169
|
-
|
170
|
-
load_dir_4(path_four,4)
|
171
|
-
|
172
|
-
load_dir_5(path_five,5)
|
173
|
-
|
174
|
-
load_dir_6(path_six,6)
|
175
|
-
|
176
|
-
load_dir_7(path_seven,7)
|
177
|
-
|
178
|
-
load_dir_8(path_eight,8)
|
179
|
-
|
180
|
-
load_dir_9(path_nine,9)
|
181
|
-
|
182
|
-
load_dir_0(path_zero,0)
|
183
|
-
|
184
45
|
#print(y)
|
185
46
|
#リストになっている数値データをnumpyの配列に変換
|
186
47
|
x=np.array(x)
|
@@ -188,126 +49,19 @@
|
|
188
49
|
#データを学習用とテスト用に分ける
|
189
50
|
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
|
190
51
|
|
191
|
-
|
192
|
-
|
193
|
-
#訓練データとラベルの確認
|
194
|
-
print(x_train.shape,y_train.shape)
|
195
52
|
|
196
|
-
#テストデータとラベルの次元の確認
|
197
|
-
print(x_test.shape,y_test.shape)
|
198
|
-
print(x_test[111].shape)
|
199
|
-
#数値データをもとの大きさに戻す
|
200
|
-
x_test[9]=x_test[9]*255
|
201
|
-
#貼り付け
|
202
|
-
plt.imshow(x_test[9])
|
203
|
-
#表示
|
204
|
-
plt.show()
|
205
|
-
#ラベルの表示
|
206
|
-
print(y_test[9])
|
207
53
|
|
208
|
-
|
209
54
|
x_train=x_train.reshape(len(x_train),28,28,1).astype('float32')/255
|
210
55
|
x_test=x_test.reshape(len(x_test),28,28,1).astype('float32')/255
|
211
56
|
|
212
|
-
print(x_train.shape,x_test.shape)
|
213
57
|
|
214
58
|
|
215
59
|
|
216
|
-
#出力(ラベル、画像の次元など)
|
217
|
-
(870, 28, 28) (870,)
|
218
|
-
(218, 28, 28) (218,)
|
219
|
-
(28, 28)
|
220
60
|
|
221
|
-
|
222
|
-
|
223
|
-
4
|
224
|
-
(870, 28, 28, 1) (218, 28, 28, 1)
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
61
|
import keras
|
230
62
|
from keras.utils import to_categorical
|
231
|
-
|
63
|
+
|
232
|
-
#x_train=x_train.reshape(-1,784).astype('float32')/255
|
233
|
-
#x_test=x_test.reshape(-1,784).astype('float32')/255
|
234
|
-
|
235
64
|
y_train=keras.utils.np_utils.to_categorical(y_train.astype('int32'),10)
|
236
65
|
y_test=keras.utils.np_utils.to_categorical(y_test.astype('int32'),10)
|
237
|
-
|
238
66
|
|
239
|
-
|
240
|
-
|
241
|
-
|
242
|
-
from keras import models
|
243
|
-
from keras import layers
|
244
|
-
from keras.layers import Dense,Dropout,MaxPooling2D,Convolution2D
|
245
|
-
|
246
|
-
model=models.Sequential()
|
247
|
-
model.add(layers.Conv2D(32,(3,3),activation='relu',input_shape=(28,28,1)))
|
248
|
-
model.add(layers.MaxPooling2D((2,2)))
|
249
|
-
model.add(Dropout(0.2))
|
250
|
-
model.add(layers.Conv2D(64,(3,3),activation='relu'))
|
251
|
-
model.add(layers.MaxPooling2D(2,2))
|
252
|
-
model.add(Dropout(0.2))
|
253
|
-
model.add(layers.Conv2D(64,(3,3),activation='relu'))
|
254
|
-
model.add(layers.Flatten())
|
255
|
-
model.add(layers.Dense(64,activation='relu'))
|
256
|
-
model.add(layers.Dense(out_size,activation='softmax'))
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
# データのシャッフル
|
261
|
-
data_number = len(x_train)
|
262
|
-
|
263
|
-
shuffled_num = np.arange(data_number)
|
264
|
-
np.random.shuffle(shuffled_num)
|
265
|
-
|
266
|
-
for i in range(data_number):
|
267
|
-
x_train[shuffled_num[i]], x_train[i] = x_train[i], x_train[shuffled_num[i]]
|
268
|
-
y_train[shuffled_num[i]], y_train[i] = y_train[i], y_train[shuffled_num[i]]
|
269
|
-
|
270
|
-
|
271
|
-
print(y_train[9])
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
#出力
|
276
|
-
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
from keras import optimizers
|
282
|
-
model.compile(optimizer='adam',
|
283
|
-
loss='categorical_crossentropy',
|
284
|
-
metrics=['accuracy'])
|
285
|
-
|
286
|
-
model.fit(x_train,y_train,batch_size=10,epochs=10)
|
287
|
-
|
288
|
-
model.save('keras_number.h5')
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
Epoch 1/10
|
294
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1910 - accuracy: 0.1920
|
295
|
-
Epoch 2/10
|
296
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1406 - accuracy: 0.1943
|
297
|
-
Epoch 3/10
|
298
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1419 - accuracy: 0.1828
|
299
|
-
Epoch 4/10
|
300
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1349 - accuracy: 0.1874
|
301
|
-
Epoch 5/10
|
302
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1318 - accuracy: 0.1805
|
303
|
-
Epoch 6/10
|
304
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1369 - accuracy: 0.1897
|
305
|
-
Epoch 7/10
|
306
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1393 - accuracy: 0.1885
|
307
|
-
Epoch 8/100. 番号リスト
|
308
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1365 - accuracy: 0.1782
|
309
|
-
Epoch 9/10
|
310
|
-
870/870 [==============================] - 1s 988us/step - loss: 2.1387 - accuracy: 0.1897
|
311
|
-
Epoch 10/10
|
312
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1336 - accuracy: 0.1816
|
313
67
|
```
|
2
文法の修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -187,16 +187,9 @@
|
|
187
187
|
y=np.array(y)
|
188
188
|
#データを学習用とテスト用に分ける
|
189
189
|
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
|
190
|
-
#print(x.shape)
|
191
|
-
#print(y_train)
|
192
|
-
|
193
190
|
|
194
191
|
|
195
192
|
|
196
|
-
In [14]:
|
197
|
-
|
198
|
-
|
199
|
-
|
200
193
|
#訓練データとラベルの確認
|
201
194
|
print(x_train.shape,y_train.shape)
|
202
195
|
|
@@ -220,21 +213,19 @@
|
|
220
213
|
|
221
214
|
|
222
215
|
|
223
|
-
|
216
|
+
#出力(ラベル、画像の次元など)
|
224
217
|
(870, 28, 28) (870,)
|
225
218
|
(218, 28, 28) (218,)
|
226
219
|
(28, 28)
|
227
220
|
|
228
221
|
|
229
222
|
|
230
|
-
|
231
|
-
|
232
223
|
4
|
233
224
|
(870, 28, 28, 1) (218, 28, 28, 1)
|
234
|
-
In [15]:
|
235
225
|
|
236
226
|
|
237
227
|
|
228
|
+
|
238
229
|
import keras
|
239
230
|
from keras.utils import to_categorical
|
240
231
|
|
@@ -247,10 +238,7 @@
|
|
247
238
|
|
248
239
|
|
249
240
|
|
250
|
-
In [16]:
|
251
241
|
|
252
|
-
|
253
|
-
|
254
242
|
from keras import models
|
255
243
|
from keras import layers
|
256
244
|
from keras.layers import Dense,Dropout,MaxPooling2D,Convolution2D
|
@@ -266,18 +254,9 @@
|
|
266
254
|
model.add(layers.Flatten())
|
267
255
|
model.add(layers.Dense(64,activation='relu'))
|
268
256
|
model.add(layers.Dense(out_size,activation='softmax'))
|
269
|
-
#model.add(layers.Dense(512,activation='relu',input_shape=(784,)))
|
270
|
-
#model.add(Dropout(0.2))
|
271
|
-
#model.add(Dense(512,activation='relu'))
|
272
|
-
#model.add(Dropout(0.2))
|
273
|
-
#model.add(layers.Dense(out_size,activation='softmax'))
|
274
257
|
|
275
258
|
|
276
259
|
|
277
|
-
In [17]:
|
278
|
-
|
279
|
-
|
280
|
-
|
281
260
|
# データのシャッフル
|
282
261
|
data_number = len(x_train)
|
283
262
|
|
@@ -293,12 +272,12 @@
|
|
293
272
|
|
294
273
|
|
295
274
|
|
296
|
-
|
275
|
+
#出力
|
297
276
|
[0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
|
298
|
-
In [18]:
|
299
277
|
|
300
278
|
|
301
279
|
|
280
|
+
|
302
281
|
from keras import optimizers
|
303
282
|
model.compile(optimizer='adam',
|
304
283
|
loss='categorical_crossentropy',
|
1
文法の修正
title
CHANGED
File without changes
|
body
CHANGED
@@ -2,12 +2,15 @@
|
|
2
2
|
手書き文字の学習をやっています。
|
3
3
|
そこで質問なのですが、損失が減らず、当然正解率も上がらない状態に陥っています。
|
4
4
|
いろいろ試しては見ましたが、結果は変わりませんでした。
|
5
|
-
数字の種類を減らした場合、lossと正解率は上がりましたがlossが減っていたりしたわけではなく単純に種類が減ったから正解率も上がっただけでした。
|
5
|
+
数字の種類を減らした場合、数字のデータ数を増やすとlossと正解率は上がりましたがlossが減っていたりしたわけではなく単純に種類が減ったから正解率も上がっただけでした。
|
6
6
|
何が原因なのかわからないのでご教授いただければ幸いです。
|
7
7
|
ちなみに、modelはmnistデータセットで99%ほどの正解率でした。
|
8
8
|
|
9
9
|
|
10
10
|
|
11
|
+
|
12
|
+
|
13
|
+
```ここに言語を入力
|
11
14
|
#画像フォルダから画像データを読み込む
|
12
15
|
import glob,os
|
13
16
|
from sklearn.model_selection import train_test_split
|
@@ -327,4 +330,5 @@
|
|
327
330
|
Epoch 9/10
|
328
331
|
870/870 [==============================] - 1s 988us/step - loss: 2.1387 - accuracy: 0.1897
|
329
332
|
Epoch 10/10
|
330
|
-
870/870 [==============================] - 1s 1ms/step - loss: 2.1336 - accuracy: 0.1816
|
333
|
+
870/870 [==============================] - 1s 1ms/step - loss: 2.1336 - accuracy: 0.1816
|
334
|
+
```
|