質問編集履歴
7
.
test
CHANGED
File without changes
|
test
CHANGED
@@ -84,9 +84,9 @@
|
|
84
84
|
|
85
85
|
|
86
86
|
|
87
|
-
|
87
|
+
y = dataset[target_col]
|
88
|
-
|
88
|
+
|
89
|
-
X
|
89
|
+
X = dataset[feature_cols]
|
90
90
|
|
91
91
|
|
92
92
|
|
6
.
test
CHANGED
File without changes
|
test
CHANGED
@@ -140,6 +140,8 @@
|
|
140
140
|
|
141
141
|
```
|
142
142
|
|
143
|
+
コード修正後のエラー(初回とはエラー内容が異なります)
|
144
|
+
|
143
145
|
KeyError Traceback (most recent call last)
|
144
146
|
|
145
147
|
~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
|
5
.
test
CHANGED
File without changes
|
test
CHANGED
@@ -138,7 +138,7 @@
|
|
138
138
|
|
139
139
|
```
|
140
140
|
|
141
|
-
```
|
141
|
+
```
|
142
142
|
|
143
143
|
KeyError Traceback (most recent call last)
|
144
144
|
|
@@ -240,7 +240,9 @@
|
|
240
240
|
|
241
241
|
|
242
242
|
|
243
|
-
|
243
|
+
```
|
244
|
+
|
245
|
+
file_0627.csv
|
244
246
|
|
245
247
|
|date|patient|6day_exclusion_rate|14day_exclusion_rate
|
246
248
|
|
4
修正追記しました
test
CHANGED
File without changes
|
test
CHANGED
@@ -28,9 +28,65 @@
|
|
28
28
|
|
29
29
|
```Python
|
30
30
|
|
31
|
+
%matplotlib inline
|
32
|
+
|
33
|
+
import matplotlib
|
34
|
+
|
35
|
+
import matplotlib.pyplot as plt
|
36
|
+
|
37
|
+
import numpy as np
|
38
|
+
|
39
|
+
import pandas as pd
|
40
|
+
|
41
|
+
from sklearn.linear_model import LinearRegression
|
42
|
+
|
43
|
+
from sklearn.tree import DecisionTreeRegressor
|
44
|
+
|
45
|
+
from sklearn.ensemble import RandomForestRegressor
|
46
|
+
|
47
|
+
from sklearn.model_selection import GridSearchCV
|
48
|
+
|
49
|
+
from sklearn.model_selection import train_test_split
|
50
|
+
|
51
|
+
from sklearn.metrics import mean_squared_error
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
dataset = pd.read_csv('file_0627.csv')
|
56
|
+
|
57
|
+
dataset.head()
|
58
|
+
|
59
|
+
|
60
|
+
|
31
|
-
|
61
|
+
target_col = 'patient'
|
32
|
-
|
62
|
+
|
33
|
-
|
63
|
+
exclude_cols = ['date','patient','14day_exclusion_rate']
|
64
|
+
|
65
|
+
feature_cols = []
|
66
|
+
|
67
|
+
for col in dataset.columns:
|
68
|
+
|
69
|
+
if col not in exclude_cols:
|
70
|
+
|
71
|
+
feature_cols.append(col)
|
72
|
+
|
73
|
+
|
74
|
+
|
75
|
+
X_train_val, X_test, y_train_val, y_test = \
|
76
|
+
|
77
|
+
train_test_split(X, y, test_size=0.3, random_state=1234) #分割1
|
78
|
+
|
79
|
+
|
80
|
+
|
81
|
+
X_train, X_val, y_train, y_val = \
|
82
|
+
|
83
|
+
train_test_split(X_train_val, y_train_val, test_size=0.3, random_state=1234) #分割2
|
84
|
+
|
85
|
+
|
86
|
+
|
87
|
+
Y_vars = target_col
|
88
|
+
|
89
|
+
X_vars = feature_cols
|
34
90
|
|
35
91
|
|
36
92
|
|
@@ -86,7 +142,43 @@
|
|
86
142
|
|
87
143
|
KeyError Traceback (most recent call last)
|
88
144
|
|
145
|
+
~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
|
146
|
+
|
147
|
+
2656 try:
|
148
|
+
|
149
|
+
-> 2657 return self._engine.get_loc(key)
|
150
|
+
|
151
|
+
2658 except KeyError:
|
152
|
+
|
153
|
+
|
154
|
+
|
155
|
+
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
|
156
|
+
|
157
|
+
|
158
|
+
|
159
|
+
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
|
164
|
+
|
165
|
+
|
166
|
+
|
167
|
+
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
|
168
|
+
|
169
|
+
|
170
|
+
|
171
|
+
KeyError: 'patient'
|
172
|
+
|
173
|
+
|
174
|
+
|
175
|
+
During handling of the above exception, another exception occurred:
|
176
|
+
|
177
|
+
|
178
|
+
|
179
|
+
KeyError Traceback (most recent call last)
|
180
|
+
|
89
|
-
<ipython-input-
|
181
|
+
<ipython-input-57-82605815cc01> in <module>
|
90
182
|
|
91
183
|
3
|
92
184
|
|
@@ -102,62 +194,56 @@
|
|
102
194
|
|
103
195
|
~\Anaconda3\lib\site-packages\pandas\core\frame.py in __getitem__(self, key)
|
104
196
|
|
105
|
-
29
|
106
|
-
|
107
|
-
29
|
108
|
-
|
109
|
-
-> 29
|
110
|
-
|
111
|
-
29
|
112
|
-
|
113
|
-
29
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
~\Anaconda3\lib\site-packages\pandas\core\index
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
->
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
1
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
KeyError: "None of [Float64Index([ 0.140526, 0.131246, 0.134081,\n 0.258836, 0.183608, 0.121047,\n 0.12695399999999998, 0.130412, 0.129215,\n -0.000315,\n ...\n 0.133338, 0.120761, 0.20714499999999997,\n 0.255416, 0.11556300000000001, 0.15191500000000002,\n 0.136953, 0.140565, 0.132261,\n 0.215802],\n dtype='float64', length=4465)] are in the [columns]"
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
```
|
197
|
+
2925 if self.columns.nlevels > 1:
|
198
|
+
|
199
|
+
2926 return self._getitem_multilevel(key)
|
200
|
+
|
201
|
+
-> 2927 indexer = self.columns.get_loc(key)
|
202
|
+
|
203
|
+
2928 if is_integer(indexer):
|
204
|
+
|
205
|
+
2929 indexer = [indexer]
|
206
|
+
|
207
|
+
|
208
|
+
|
209
|
+
~\Anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance)
|
210
|
+
|
211
|
+
2657 return self._engine.get_loc(key)
|
212
|
+
|
213
|
+
2658 except KeyError:
|
214
|
+
|
215
|
+
-> 2659 return self._engine.get_loc(self._maybe_cast_indexer(key))
|
216
|
+
|
217
|
+
2660 indexer = self.get_indexer([key], method=method, tolerance=tolerance)
|
218
|
+
|
219
|
+
2661 if indexer.ndim > 1 or indexer.size > 1:
|
220
|
+
|
221
|
+
|
222
|
+
|
223
|
+
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
|
224
|
+
|
225
|
+
|
226
|
+
|
227
|
+
pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()
|
228
|
+
|
229
|
+
|
230
|
+
|
231
|
+
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
|
232
|
+
|
233
|
+
|
234
|
+
|
235
|
+
pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
|
236
|
+
|
237
|
+
|
238
|
+
|
239
|
+
KeyError: 'patient'
|
240
|
+
|
241
|
+
|
242
|
+
|
243
|
+
|
244
|
+
|
245
|
+
|date|patient|6day_exclusion_rate|14day_exclusion_rate
|
246
|
+
|
247
|
+
|2020/4/1|181|0.117179|0.130412
|
248
|
+
|
249
|
+
|2020/4/2|186|0.17748|0.129215
|
3
.
test
CHANGED
@@ -1 +1 @@
|
|
1
|
-
[Python] 時系列分析(ランダムフォレスト)コーディングエラーの意味
|
1
|
+
[Python] 時系列分析(ランダムフォレスト)コーディングエラーの意味.
|
test
CHANGED
@@ -27,18 +27,6 @@
|
|
27
27
|
|
28
28
|
|
29
29
|
```Python
|
30
|
-
|
31
|
-
rf = RandomForestRegressor(random_state=1234)
|
32
|
-
|
33
|
-
rf.fit(X_train, y_train)
|
34
|
-
|
35
|
-
y_pred = rf.predict(X_val)
|
36
|
-
|
37
|
-
rf_mse = mean_squared_error(y_val, y_pred)
|
38
|
-
|
39
|
-
print('Random Forest RMSE: ', np.sqrt(rf_mse))
|
40
|
-
|
41
|
-
|
42
30
|
|
43
31
|
Y_vars = dataset['patient']
|
44
32
|
|
2
.
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,4 +1,6 @@
|
|
1
1
|
時系列分析(ランダムフォレスト)で将来の人数を予測しています。
|
2
|
+
|
3
|
+
|
2
4
|
|
3
5
|
手元のデータ集計期間が短いため、ある特定日を用いて前日、前々日の人数を予測したものを学習データ、実際の人数をテストデータとして予測を行いたいです。
|
4
6
|
|
1
.
test
CHANGED
@@ -1 +1 @@
|
|
1
|
-
[Python] エラーの意味
|
1
|
+
[Python] 時系列分析(ランダムフォレスト)コーディングエラーの意味
|
test
CHANGED
@@ -10,11 +10,11 @@
|
|
10
10
|
|
11
11
|
実現したいこと
|
12
12
|
|
13
|
-
① 学習用データの作成 4/1のデータから3/31,3/30の人数を予測
|
13
|
+
① 学習用データの作成 4/1のデータから3/31,3/30の人数を予測
|
14
14
|
|
15
|
-
② ①を学習用データ、実際の人数をテストデータとして予測
|
15
|
+
② ①を学習用データ、実際の人数をテストデータとして予測
|
16
16
|
|
17
|
-
③ ランダムフォレストでRMSEを算出
|
17
|
+
③ ①②を用いてランダムフォレストでRMSEを算出
|
18
18
|
|
19
19
|
|
20
20
|
|