teratail header banner
teratail header banner
質問するログイン新規登録

質問編集履歴

4

エラー文を見やすく

2020/03/24 03:58

投稿

KazuyaKojima
KazuyaKojima

スコア16

title CHANGED
File without changes
body CHANGED
@@ -17,6 +17,7 @@
17
17
 
18
18
  エラー文:
19
19
  Exception in main training loop: all the input array dimensions for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 150 and the array at index 14 has size 149
20
+
20
21
  Traceback (most recent call last):
21
22
  File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/trainer.py", line 319, in run
22
23
  entry.extension(self)
@@ -34,6 +35,9 @@
34
35
  [array[None] for array in arrays])
35
36
  File "<__array_function__ internals>", line 6, in concatenate
36
37
  Will finalize trainer extensions and updater before reraising the exception.
38
+
39
+ ####trainer.run()で学習を行う際に入力ベクトルの次元数が揃っていないため学習が行えないというエラー####
40
+
37
41
  Traceback (most recent call last):
38
42
  File "train_review.py", line 171, in <module>
39
43
  trainer.run()
@@ -56,8 +60,11 @@
56
60
  File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 254, in _concat_arrays
57
61
  [array[None] for array in arrays])
58
62
  File "<__array_function__ internals>", line 6, in concatenate
63
+
64
+
59
65
  ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 150 and the array at index 14 has size 149
60
66
 
67
+
61
68
  ↑のように所々149次元(データセットは全6539件)になったりして次元数が揃ってないことによって学習ができなくなっています。
62
69
 
63
70
  ```python

3

エラー文の追加

2020/03/24 03:58

投稿

KazuyaKojima
KazuyaKojima

スコア16

title CHANGED
File without changes
body CHANGED
@@ -10,14 +10,56 @@
10
10
 
11
11
  bag of wordsでベクトル化
12
12
 
13
- LSIを用いて次元削減   ←ここで次元数の指定がうまくいかない
13
+ LSIを用いて150次元削減   ←ここで次元数の指定がうまくいかない
14
14
 
15
15
  学習・推定
16
16
 
17
17
 
18
18
  エラー文:
19
+ Exception in main training loop: all the input array dimensions for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 150 and the array at index 14 has size 149
20
+ Traceback (most recent call last):
21
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/trainer.py", line 319, in run
22
+ entry.extension(self)
23
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/extensions/evaluator.py", line 161, in __call__
24
+ result = self.evaluate()
25
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/extensions/evaluator.py", line 216, in evaluate
26
+ self.converter, batch, self.device)
27
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 73, in _call_converter
28
+ return converter(batch, device)
29
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 58, in wrap_call
30
+ return func(*args, **kwargs)
31
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 223, in concat_examples
32
+ [example[i] for example in batch], padding[i])))
33
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 254, in _concat_arrays
34
+ [array[None] for array in arrays])
35
+ File "<__array_function__ internals>", line 6, in concatenate
36
+ Will finalize trainer extensions and updater before reraising the exception.
37
+ Traceback (most recent call last):
38
+ File "train_review.py", line 171, in <module>
39
+ trainer.run()
40
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/trainer.py", line 349, in run
41
+ six.reraise(*exc_info)
42
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/six.py", line 693, in reraise
43
+ raise value
44
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/trainer.py", line 319, in run
45
+ entry.extension(self)
46
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/extensions/evaluator.py", line 161, in __call__
47
+ result = self.evaluate()
48
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/training/extensions/evaluator.py", line 216, in evaluate
49
+ self.converter, batch, self.device)
50
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 73, in _call_converter
51
+ return converter(batch, device)
52
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 58, in wrap_call
53
+ return func(*args, **kwargs)
54
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 223, in concat_examples
55
+ [example[i] for example in batch], padding[i])))
56
+ File "/Users/kojimakazuya/anaconda3/lib/python3.7/site-packages/chainer/dataset/convert.py", line 254, in _concat_arrays
57
+ [array[None] for array in arrays])
58
+ File "<__array_function__ internals>", line 6, in concatenate
19
59
  ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 150 and the array at index 14 has size 149
20
60
 
61
+ ↑のように所々149次元(データセットは全6539件)になったりして次元数が揃ってないことによって学習ができなくなっています。
62
+
21
63
  ```python
22
64
  import db
23
65
  import pandas as pd

2

フロー詳細

2020/03/24 01:21

投稿

KazuyaKojima
KazuyaKojima

スコア16

title CHANGED
File without changes
body CHANGED
@@ -3,6 +3,18 @@
3
3
 
4
4
  理由が全く分からず質問させていただきました。
5
5
 
6
+ やろうとしているフローチャート:
7
+ DBからつぶやき取得
8
+
9
+ 形態素解析
10
+
11
+ bag of wordsでベクトル化
12
+
13
+ LSIを用いて次元削減   ←ここで次元数の指定がうまくいかない
14
+
15
+ 学習・推定
16
+
17
+
6
18
  エラー文:
7
19
  ValueError: all the input array dimensions for the concatenation axis must match exactly, but along dimension 1, the array at index 0 has size 150 and the array at index 14 has size 149
8
20
 

1

見やすく

2020/03/23 07:32

投稿

KazuyaKojima
KazuyaKojima

スコア16

title CHANGED
File without changes
body CHANGED
@@ -15,10 +15,6 @@
15
15
  import datetime
16
16
  import pymysql.cursors
17
17
  import gensim
18
- from gensim.models import word2vec
19
- from sklearn import svm
20
- from sklearn.model_selection import GridSearchCV
21
- from sklearn.metrics import accuracy_score
22
18
  import mlp
23
19
  import random
24
20
  from gensim import corpora,matutils
@@ -26,14 +22,6 @@
26
22
  import screaning
27
23
  from chainer import serializers
28
24
 
29
- def param():
30
- ret = {
31
- 'C':[1, 10, 100],
32
- 'kernel':['rbf'],
33
- 'gamma':np.linspace(0.01, 1.0, 10)
34
- }
35
- return ret
36
-
37
25
  # DB操作用にカーソルを作成
38
26
  cursor = db.conn.cursor()
39
27