質問編集履歴

2

予測用のコードを追加

2020/03/19 00:31

投稿

y.isshi
y.isshi

スコア7

test CHANGED
File without changes
test CHANGED
@@ -133,3 +133,45 @@
133
133
 
134
134
 
135
135
  ```
136
+
137
+
138
+
139
+ 予測用のコード
140
+
141
+ ```python
142
+
143
+ from keras.models import load_model
144
+
145
+ import numpy as np
146
+
147
+ import csv
148
+
149
+
150
+
151
+ test_data=[]
152
+
153
+ with open('test.csv') as f:
154
+
155
+ reader = csv.reader(f)
156
+
157
+ for row in reader:
158
+
159
+ test_data.append(row)
160
+
161
+
162
+
163
+ test_data1 = np.array(test_data,dtype=np.float64)
164
+
165
+
166
+
167
+
168
+
169
+ model = load_model("model.h5")
170
+
171
+
172
+
173
+ result = model.predict_classes(test_data1)
174
+
175
+ print(result)
176
+
177
+ ```

1

修正後のソースコードを追加しました

2020/03/19 00:31

投稿

y.isshi
y.isshi

スコア7

test CHANGED
File without changes
test CHANGED
@@ -79,3 +79,57 @@
79
79
  model.fit(train_data1,train_label1, epochs=300, validation_split=0.1)
80
80
 
81
81
  ```
82
+
83
+
84
+
85
+ 修正後のソースコード
86
+
87
+ ```python
88
+
89
+ # Sequentialモデル使用(Sequentialモデルはレイヤを順に重ねたモデル)
90
+
91
+ model = Sequential()
92
+
93
+
94
+
95
+ model.add(Dense(1900, activation='relu', input_shape = ( 950, )))
96
+
97
+ model.add(Dropout(0.5))
98
+
99
+
100
+
101
+ model.add(Dense(500, activation='relu'))
102
+
103
+ model.add(Dropout(0.5))
104
+
105
+
106
+
107
+ model.add(Dense(1, activation='linear'))
108
+
109
+
110
+
111
+ # モデルをコンパイル
112
+
113
+ model.compile(loss="mean_squared_error", optimizer="sgd", metrics=["accuracy"])
114
+
115
+
116
+
117
+ model.summary()
118
+
119
+
120
+
121
+ #訓練
122
+
123
+ model.fit(train_data1,train_label1, epochs=300, validation_split=0.1)
124
+
125
+ model.save('model.h5')
126
+
127
+
128
+
129
+ score = model.evaluate(test_data1, test_result1)
130
+
131
+ print("正解率: %.2f%%" % (score[1] * 100))
132
+
133
+
134
+
135
+ ```