質問編集履歴
4
test
CHANGED
@@ -1 +1 @@
|
|
1
|
-
不均衡データを3つのクラスに分類し、グリッド
|
1
|
+
不均衡データを3つのクラスに分類し、グリッドサーチをしたいのですが 上手くいきません。
|
test
CHANGED
File without changes
|
3
test
CHANGED
File without changes
|
test
CHANGED
File without changes
|
2
test
CHANGED
File without changes
|
test
CHANGED
@@ -4,7 +4,7 @@
|
|
4
4
|
|
5
5
|
|
6
6
|
|
7
|
-
不均衡データを3つのクラスに分類し、グリッド
|
7
|
+
不均衡データを3つのクラスに分類し、グリッドサーチをしたいのですが
|
8
8
|
|
9
9
|
上手くいきません。
|
10
10
|
|
1
誤字とエラーメッセージの追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -10,10 +10,6 @@
|
|
10
10
|
|
11
11
|
|
12
12
|
|
13
|
-
(例)PHP(CakePHP)で●●なシステムを作っています。
|
14
|
-
|
15
|
-
■■な機能を実装中に以下のエラーメッセージが発生しました。
|
16
|
-
|
17
13
|
|
18
14
|
|
19
15
|
### 発生している問題・エラーメッセージ
|
@@ -22,6 +18,190 @@
|
|
22
18
|
|
23
19
|
```
|
24
20
|
|
21
|
+
ValueError Traceback (most recent call last)
|
22
|
+
|
23
|
+
<ipython-input-15-32a008acd626> in <module>
|
24
|
+
|
25
|
+
41 grid_search = GridSearchCV(LinearSVC(class_weight="balanced"), param_grid, cv = 4)
|
26
|
+
|
27
|
+
42
|
28
|
+
|
29
|
+
---> 43 grid_search.fit(X_train_std, y_train)
|
30
|
+
|
31
|
+
44
|
32
|
+
|
33
|
+
45 # 結果
|
34
|
+
|
35
|
+
|
36
|
+
|
37
|
+
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
|
38
|
+
|
39
|
+
686 return results
|
40
|
+
|
41
|
+
687
|
42
|
+
|
43
|
+
--> 688 self._run_search(evaluate_candidates)
|
44
|
+
|
45
|
+
689
|
46
|
+
|
47
|
+
690 # For multi-metric evaluation, store the best_index_, best_params_ and
|
48
|
+
|
49
|
+
|
50
|
+
|
51
|
+
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in _run_search(self, evaluate_candidates)
|
52
|
+
|
53
|
+
1147 def _run_search(self, evaluate_candidates):
|
54
|
+
|
55
|
+
1148 """Search all candidates in param_grid"""
|
56
|
+
|
57
|
+
-> 1149 evaluate_candidates(ParameterGrid(self.param_grid))
|
58
|
+
|
59
|
+
1150
|
60
|
+
|
61
|
+
1151
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
~\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py in evaluate_candidates(candidate_params)
|
66
|
+
|
67
|
+
665 for parameters, (train, test)
|
68
|
+
|
69
|
+
666 in product(candidate_params,
|
70
|
+
|
71
|
+
--> 667 cv.split(X, y, groups)))
|
72
|
+
|
73
|
+
668
|
74
|
+
|
75
|
+
669 if len(out) < 1:
|
76
|
+
|
77
|
+
|
78
|
+
|
79
|
+
~\Anaconda3\lib\site-packages\joblib\parallel.py in __call__(self, iterable)
|
80
|
+
|
81
|
+
919 # remaining jobs.
|
82
|
+
|
83
|
+
920 self._iterating = False
|
84
|
+
|
85
|
+
--> 921 if self.dispatch_one_batch(iterator):
|
86
|
+
|
87
|
+
922 self._iterating = self._original_iterator is not None
|
88
|
+
|
89
|
+
923
|
90
|
+
|
91
|
+
|
92
|
+
|
93
|
+
~\Anaconda3\lib\site-packages\joblib\parallel.py in dispatch_one_batch(self, iterator)
|
94
|
+
|
95
|
+
757 return False
|
96
|
+
|
97
|
+
758 else:
|
98
|
+
|
99
|
+
--> 759 self._dispatch(tasks)
|
100
|
+
|
101
|
+
760 return True
|
102
|
+
|
103
|
+
761
|
104
|
+
|
105
|
+
|
106
|
+
|
107
|
+
~\Anaconda3\lib\site-packages\joblib\parallel.py in _dispatch(self, batch)
|
108
|
+
|
109
|
+
714 with self._lock:
|
110
|
+
|
111
|
+
715 job_idx = len(self._jobs)
|
112
|
+
|
113
|
+
--> 716 job = self._backend.apply_async(batch, callback=cb)
|
114
|
+
|
115
|
+
717 # A job can complete so quickly than its callback is
|
116
|
+
|
117
|
+
718 # called before we get here, causing self._jobs to
|
118
|
+
|
119
|
+
|
120
|
+
|
121
|
+
~\Anaconda3\lib\site-packages\joblib\_parallel_backends.py in apply_async(self, func, callback)
|
122
|
+
|
123
|
+
180 def apply_async(self, func, callback=None):
|
124
|
+
|
125
|
+
181 """Schedule a func to be run"""
|
126
|
+
|
127
|
+
--> 182 result = ImmediateResult(func)
|
128
|
+
|
129
|
+
183 if callback:
|
130
|
+
|
131
|
+
184 callback(result)
|
132
|
+
|
133
|
+
|
134
|
+
|
135
|
+
~\Anaconda3\lib\site-packages\joblib\_parallel_backends.py in __init__(self, batch)
|
136
|
+
|
137
|
+
547 # Don't delay the application, to avoid keeping the input
|
138
|
+
|
139
|
+
548 # arguments in memory
|
140
|
+
|
141
|
+
--> 549 self.results = batch()
|
142
|
+
|
143
|
+
550
|
144
|
+
|
145
|
+
551 def get(self):
|
146
|
+
|
147
|
+
|
148
|
+
|
149
|
+
~\Anaconda3\lib\site-packages\joblib\parallel.py in __call__(self)
|
150
|
+
|
151
|
+
223 with parallel_backend(self._backend, n_jobs=self._n_jobs):
|
152
|
+
|
153
|
+
224 return [func(*args, **kwargs)
|
154
|
+
|
155
|
+
--> 225 for func, args, kwargs in self.items]
|
156
|
+
|
157
|
+
226
|
158
|
+
|
159
|
+
227 def __len__(self):
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
~\Anaconda3\lib\site-packages\joblib\parallel.py in <listcomp>(.0)
|
164
|
+
|
165
|
+
223 with parallel_backend(self._backend, n_jobs=self._n_jobs):
|
166
|
+
|
167
|
+
224 return [func(*args, **kwargs)
|
168
|
+
|
169
|
+
--> 225 for func, args, kwargs in self.items]
|
170
|
+
|
171
|
+
226
|
172
|
+
|
173
|
+
227 def __len__(self):
|
174
|
+
|
175
|
+
|
176
|
+
|
177
|
+
~\Anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)
|
178
|
+
|
179
|
+
501 train_scores = {}
|
180
|
+
|
181
|
+
502 if parameters is not None:
|
182
|
+
|
183
|
+
--> 503 estimator.set_params(**parameters)
|
184
|
+
|
185
|
+
504
|
186
|
+
|
187
|
+
505 start_time = time.time()
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
~\Anaconda3\lib\site-packages\sklearn\base.py in set_params(self, **params)
|
192
|
+
|
193
|
+
222 'Check the list of available parameters '
|
194
|
+
|
195
|
+
223 'with `estimator.get_params().keys()`.' %
|
196
|
+
|
197
|
+
--> 224 (key, self))
|
198
|
+
|
199
|
+
225
|
200
|
+
|
201
|
+
226 if delim:
|
202
|
+
|
203
|
+
|
204
|
+
|
25
205
|
ValueError: Invalid parameter gamma for estimator LinearSVC(C=0.001, class_weight='balanced', dual=True, fit_intercept=True,
|
26
206
|
|
27
207
|
intercept_scaling=1, loss='squared_hinge', max_iter=1000,
|
@@ -34,8 +214,6 @@
|
|
34
214
|
|
35
215
|
|
36
216
|
|
37
|
-
|
38
|
-
|
39
217
|
```Python
|
40
218
|
|
41
219
|
ソースコード
|