teratail header banner
teratail header banner
質問するログイン新規登録

質問編集履歴

2

エラーコードの更新

2020/01/30 07:47

投稿

svsvi
svsvi

スコア7

title CHANGED
File without changes
body CHANGED
@@ -109,10 +109,10 @@
109
109
  pred = model.predict(x_test, batch_size=1, verbose=0)
110
110
  y_pred2 = np.max(pred)
111
111
  ```
112
- ### 新しいエラーコード
112
+ ### エラーコード
113
113
  ```
114
- TypeError Traceback (most recent call last)
114
+ ValueError Traceback (most recent call last)
115
- <ipython-input-10-8349a4884248> in <module>
115
+ <ipython-input-13-b74e493b703b> in <module>
116
116
  70
117
117
  71
118
118
  ---> 72 print('confusion matrix 混合行列 =\n ', confusion_matrix(y_true=y_test2, y_pred=y_pred2))#混合行列
@@ -134,25 +134,11 @@
134
134
  82 type_pred = type_of_target(y_pred)
135
135
 
136
136
  ~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_consistent_length(*arrays)
137
- 206 """
138
- 207
139
- --> 208 lengths = [_num_samples(X) for X in arrays if X is not None]
140
- 209 uniques = np.unique(lengths)
141
137
  210 if len(uniques) > 1:
138
+ 211 raise ValueError("Found input variables with inconsistent numbers of"
139
+ --> 212 " samples: %r" % [int(l) for l in lengths])
140
+ 213
141
+ 214
142
142
 
143
- ~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in <listcomp>(.0)
144
- 206 """
145
- 207
146
- --> 208 lengths = [_num_samples(X) for X in arrays if X is not None]
147
- 209 uniques = np.unique(lengths)
148
- 210 if len(uniques) > 1:
149
-
150
- ~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in _num_samples(x)
151
- 150 if len(x.shape) == 0:
152
- 151 raise TypeError("Singleton array %r cannot be considered"
153
- --> 152 " a valid collection." % x)
154
- 153 # Check that shape is returning an integer or default to len
155
- 154 # Dask dataframes may not return numeric shape[0] value
156
-
157
- TypeError: Singleton array 1.0 cannot be considered a valid collection.
143
+ ValueError: Found input variables with inconsistent numbers of samples: [1, 12000]
158
144
  ```

1

いただいた回答に修正した際のエラーコードを表示しました

2020/01/30 07:47

投稿

svsvi
svsvi

スコア7

title CHANGED
File without changes
body CHANGED
@@ -1,7 +1,7 @@
1
1
  confusion_matrixを表示したいのですがエラーが出てしまいます。
2
2
  どうすれば表示できるのかお聞きしたいです。
3
3
  具体的なプログラムを教えてもらえると助かります。
4
- ### ソースコード
4
+ ### 最初のソースコード
5
5
  ```
6
6
  from __future__ import print_function
7
7
 
@@ -102,4 +102,57 @@
102
102
  92 # We can't have more than one value on y_type => The set is no more needed
103
103
 
104
104
  ValueError: Classification metrics can't handle a mix of binary and multiclass-multioutput targets
105
+ ```
106
+ ###修正後のy_pred2
107
+ 回答でいただいたものをもとにy_pred2を変えたらエラーが変わりました
108
+ ```
109
+ pred = model.predict(x_test, batch_size=1, verbose=0)
110
+ y_pred2 = np.max(pred)
111
+ ```
112
+ ### 新しいエラーコード
113
+ ```
114
+ TypeError Traceback (most recent call last)
115
+ <ipython-input-10-8349a4884248> in <module>
116
+ 70
117
+ 71
118
+ ---> 72 print('confusion matrix 混合行列 =\n ', confusion_matrix(y_true=y_test2, y_pred=y_pred2))#混合行列
119
+ 73 print('accuracy 正解率 = ', accuracy_score(y_true=y_test2, y_pred=y_pred2))#正解率(正しく分類されたデータ数の割合)
120
+ 74 print('precision 適合率 = ', precision_score(y_true=y_test2, y_pred=y_pred2))#適合率(Aに分類されたデータで実際にAであるデータ数の割合)
121
+
122
+ ~\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py in confusion_matrix(y_true, y_pred, labels, sample_weight, normalize)
123
+ 266
124
+ 267 """
125
+ --> 268 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
126
+ 269 if y_type not in ("binary", "multiclass"):
127
+ 270 raise ValueError("%s is not supported" % y_type)
128
+
129
+ ~\Anaconda3\lib\site-packages\sklearn\metrics\_classification.py in _check_targets(y_true, y_pred)
130
+ 78 y_pred : array or indicator matrix
131
+ 79 """
132
+ ---> 80 check_consistent_length(y_true, y_pred)
133
+ 81 type_true = type_of_target(y_true)
134
+ 82 type_pred = type_of_target(y_pred)
135
+
136
+ ~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_consistent_length(*arrays)
137
+ 206 """
138
+ 207
139
+ --> 208 lengths = [_num_samples(X) for X in arrays if X is not None]
140
+ 209 uniques = np.unique(lengths)
141
+ 210 if len(uniques) > 1:
142
+
143
+ ~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in <listcomp>(.0)
144
+ 206 """
145
+ 207
146
+ --> 208 lengths = [_num_samples(X) for X in arrays if X is not None]
147
+ 209 uniques = np.unique(lengths)
148
+ 210 if len(uniques) > 1:
149
+
150
+ ~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in _num_samples(x)
151
+ 150 if len(x.shape) == 0:
152
+ 151 raise TypeError("Singleton array %r cannot be considered"
153
+ --> 152 " a valid collection." % x)
154
+ 153 # Check that shape is returning an integer or default to len
155
+ 154 # Dask dataframes may not return numeric shape[0] value
156
+
157
+ TypeError: Singleton array 1.0 cannot be considered a valid collection.
105
158
  ```