質問編集履歴
1
コードとエラーの詳細の追加
test
CHANGED
File without changes
|
test
CHANGED
@@ -2,11 +2,81 @@
|
|
2
2
|
|
3
3
|
|
4
4
|
|
5
|
-
|
5
|
+
エラーは以下の通りです。
|
6
6
|
|
7
|
-
|
7
|
+
ValueError: Invalid parameter n_estimaters for estimator ExtraTreesRegressor(bootstrap=False, criterion='mse', max_depth=None,
|
8
8
|
|
9
|
+
max_features=0.1, max_leaf_nodes=None, min_impurity_decrease=0.0,
|
10
|
+
|
11
|
+
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
|
12
|
+
|
13
|
+
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
|
14
|
+
|
15
|
+
oob_score=False, random_state=None, verbose=0, warm_start=False). Check the list of available parameters with `estimator.get_params().keys()`.
|
16
|
+
|
17
|
+
|
18
|
+
|
19
|
+
|
20
|
+
|
21
|
+
```python
|
22
|
+
|
23
|
+
コード```
|
24
|
+
|
25
|
+
import numpy as np
|
26
|
+
|
27
|
+
import pandas as pd
|
28
|
+
|
29
|
+
from sklearn.model_selection import GridSearchCV
|
30
|
+
|
31
|
+
from sklearn.ensemble import ExtraTreesRegressor
|
32
|
+
|
33
|
+
from sklearn.metrics import r2_score
|
34
|
+
|
35
|
+
from sklearn.metrics import mean_squared_error
|
36
|
+
|
37
|
+
from sklearn.metrics import mean_absolute_error
|
38
|
+
|
39
|
+
|
40
|
+
|
41
|
+
sample_data = pd.read_csv('transformed_include_error_4.csv')
|
42
|
+
|
43
|
+
sample_data = sample_data.query('Error ==0')
|
44
|
+
|
45
|
+
|
46
|
+
|
47
|
+
sample_data = pd.read_csv('transformed_include_error_4.csv')
|
48
|
+
|
49
|
+
test_data = sample_data.query('Error ==0')
|
50
|
+
|
51
|
+
|
52
|
+
|
53
|
+
np.random.seed(seed=42)
|
54
|
+
|
55
|
+
indices = np.random.permutation(len(sample_data))
|
56
|
+
|
57
|
+
train_size = 140
|
58
|
+
|
59
|
+
train_idx, test_idx = indices[:train_size], indices[train_size:]
|
60
|
+
|
61
|
+
|
62
|
+
|
63
|
+
train_data = sample_data.iloc[train_idx]
|
64
|
+
|
65
|
+
test_data = test_data.iloc[test_idx]
|
66
|
+
|
67
|
+
|
68
|
+
|
69
|
+
y_train = train_data['Rate']
|
70
|
+
|
71
|
+
x_train = train_data.loc[:,["feature_1","feature_2","feature_3","feature_4"]]
|
72
|
+
|
73
|
+
|
74
|
+
|
9
|
-
|
75
|
+
y_test = test_data['Rate']
|
76
|
+
|
77
|
+
x_test = test_data.loc[:,["feature_1","feature_2","feature_3","feature_4"]]
|
78
|
+
|
79
|
+
|
10
80
|
|
11
81
|
params = {
|
12
82
|
|
@@ -32,12 +102,4 @@
|
|
32
102
|
|
33
103
|
)
|
34
104
|
|
35
|
-
|
36
|
-
|
37
105
|
clf.fit(x_train,y_train)
|
38
|
-
|
39
|
-
############################
|
40
|
-
|
41
|
-
SVRではチューニングもテストデータの予測も行えたのでデータに間違いがあるとは思えません。
|
42
|
-
|
43
|
-
ExtraTreesRegressorを初めて使うので根本的なミスなど原因が知りたいです。
|