質問編集履歴
1
全コードとエラーメッセージ、print結果を記載しました。
test
CHANGED
File without changes
|
test
CHANGED
@@ -10,11 +10,203 @@
|
|
10
10
|
|
11
11
|
|
12
12
|
|
13
|
+
(以下、全てのコードとエラーメッセージです。)
|
14
|
+
|
15
|
+
|
16
|
+
|
13
17
|
```ここに言語を入力
|
14
18
|
|
19
|
+
import keras
|
20
|
+
|
21
|
+
from keras.datasets import mnist
|
22
|
+
|
23
|
+
from keras.models import Sequential
|
24
|
+
|
25
|
+
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
|
26
|
+
|
27
|
+
#from keras.optimizers import RMSprop
|
28
|
+
|
29
|
+
#from keras.utils import np_utils
|
30
|
+
|
31
|
+
#from sklearn.datasets import fetch_mldata
|
32
|
+
|
33
|
+
|
34
|
+
|
35
|
+
# データを高速かつ効率的に使えるPandasをインポート
|
36
|
+
|
37
|
+
import pandas as pd
|
38
|
+
|
39
|
+
|
40
|
+
|
41
|
+
# 数値計算を効率的に行うNumpyをインポート
|
42
|
+
|
43
|
+
import numpy as np
|
44
|
+
|
45
|
+
|
46
|
+
|
47
|
+
# グラフが簡単に描写できるMatplotlibをインポート
|
48
|
+
|
49
|
+
import matplotlib
|
50
|
+
|
51
|
+
import matplotlib.pyplot as plt
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
# MNISTデータを読込む
|
56
|
+
|
57
|
+
(x_train, y_train), (x_test, y_test) = mnist.load_data()
|
58
|
+
|
59
|
+
|
60
|
+
|
61
|
+
# MNISTデータを加工する
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
# 1次元に加工する場合(畳み込みは2次元)(デフォルトは2次元)
|
66
|
+
|
67
|
+
#x_train = x_train.reshape(60000, 784)
|
68
|
+
|
69
|
+
#x_test = x_test.reshape(10000, 784)
|
70
|
+
|
71
|
+
|
72
|
+
|
73
|
+
# データを float 型に変換
|
74
|
+
|
75
|
+
x_train = x_train.astype('float32')
|
76
|
+
|
77
|
+
x_test = x_test.astype('float32')
|
78
|
+
|
79
|
+
|
80
|
+
|
81
|
+
# 0〜255 までの範囲のデータを 0〜1 までの範囲に変更(正規化)
|
82
|
+
|
83
|
+
x_train /= 255
|
84
|
+
|
85
|
+
x_test /= 255
|
86
|
+
|
87
|
+
|
88
|
+
|
89
|
+
# 分類するクラス数
|
90
|
+
|
91
|
+
y_train = keras.utils.to_categorical(y_train, 10)
|
92
|
+
|
93
|
+
y_test = keras.utils.to_categorical(y_test, 10)
|
94
|
+
|
95
|
+
|
96
|
+
|
97
|
+
# 後の評価で使用?
|
98
|
+
|
99
|
+
y_test_backup = y_test
|
100
|
+
|
101
|
+
|
102
|
+
|
103
|
+
|
104
|
+
|
105
|
+
# 両方のサイズを確認
|
106
|
+
|
107
|
+
|
108
|
+
|
109
|
+
print("x_train.shape(学習用の画像データ) : ", x_train.shape)
|
110
|
+
|
111
|
+
print("y_train_shape(学習用の正解データ) : ", y_train.shape)
|
112
|
+
|
113
|
+
print("x_test.shape(テスト用の画像データ) : ", x_test.shape)
|
114
|
+
|
115
|
+
print("y_test.shape(テスト用の正解データ) : ", y_test.shape)
|
116
|
+
|
117
|
+
|
118
|
+
|
119
|
+
x_train.shape(学習用の画像データ) : (60000, 28, 28)
|
120
|
+
|
121
|
+
y_train_shape(学習用の正解データ) : (60000, 10)
|
122
|
+
|
123
|
+
x_test.shape(テスト用の画像データ) : (10000, 28, 28)
|
124
|
+
|
125
|
+
y_test.shape(テスト用の正解データ) : (10000, 10)
|
126
|
+
|
127
|
+
|
128
|
+
|
129
|
+
# 28x28x1のサイズへ変換
|
130
|
+
|
131
|
+
x_train = x_train.reshape(x_train.shape[0], 28, 28,1)
|
132
|
+
|
133
|
+
x_test = x_test.reshape(x_test.shape[0], 28, 28,1)
|
134
|
+
|
135
|
+
|
136
|
+
|
137
|
+
# モデルの宣言
|
138
|
+
|
139
|
+
model = Sequential()
|
140
|
+
|
141
|
+
|
142
|
+
|
143
|
+
# 先に作成したmodelへレイヤーを追加
|
144
|
+
|
145
|
+
model.add(Conv2D(32, kernel_size=(3, 3),
|
146
|
+
|
147
|
+
activation='relu',
|
148
|
+
|
149
|
+
input_shape=(28,28,1)))
|
150
|
+
|
151
|
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
152
|
+
|
153
|
+
model.add(Dropout(0.25))
|
154
|
+
|
155
|
+
model.add(Flatten())
|
156
|
+
|
157
|
+
model.add(Dense(128, activation='relu'))
|
158
|
+
|
159
|
+
model.add(Dense(10, activation='softmax'))
|
160
|
+
|
161
|
+
|
162
|
+
|
163
|
+
# Learnig Processの設定
|
164
|
+
|
165
|
+
model.compile(loss='categorical_crossentropy',
|
166
|
+
|
167
|
+
optimizer='sgd',
|
168
|
+
|
169
|
+
metrics=['accuracy'])
|
170
|
+
|
171
|
+
|
172
|
+
|
173
|
+
# 注意 - 数分程度かかる
|
174
|
+
|
175
|
+
# モデルの訓練(エポック数)
|
176
|
+
|
177
|
+
model.fit(x_train, y_train, epochs=1)
|
178
|
+
|
179
|
+
|
180
|
+
|
181
|
+
|
182
|
+
|
183
|
+
Epoch 1/1
|
184
|
+
|
185
|
+
60000/60000 [==============================] - 19s 318us/step - loss: 0.4984 - acc: 0.8590
|
186
|
+
|
187
|
+
<keras.callbacks.History at 0x1fa3aaad5c0>
|
188
|
+
|
189
|
+
|
190
|
+
|
191
|
+
# テストデータを使ってモデルの評価
|
192
|
+
|
193
|
+
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
|
194
|
+
|
195
|
+
print(loss_and_metrics)
|
196
|
+
|
197
|
+
|
198
|
+
|
199
|
+
10000/10000 [==============================] - 1s 54us/step
|
200
|
+
|
201
|
+
[0.2483551863193512, 0.9253]
|
202
|
+
|
203
|
+
|
204
|
+
|
15
205
|
# 評価の実行
|
16
206
|
|
207
|
+
|
208
|
+
|
17
|
-
from sklearn.metrics import accuracy_score
|
209
|
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
18
210
|
|
19
211
|
predict_classes = model.predict_classes(x_test)
|
20
212
|
|
@@ -24,6 +216,16 @@
|
|
24
216
|
|
25
217
|
print('正確度(accuracy):', score[1])
|
26
218
|
|
219
|
+
print(' ')
|
220
|
+
|
221
|
+
#print('精度(正確度):{:.3f}'.format(accuracy_score(y_test, predict_classes)))
|
222
|
+
|
223
|
+
#print('適合率:{:.3f}'.format(precision_score(y_test, predict_classes)))
|
224
|
+
|
225
|
+
#print('再現率:{:.3f}'.format(recall_score(y_test, predict_classes)))
|
226
|
+
|
227
|
+
#print('f-1値:{:.3f}'.format(f1_score(y_test, predict_classes)))
|
228
|
+
|
27
229
|
|
28
230
|
|
29
231
|
# 混同行列(Confusion Matrix)
|
@@ -32,62 +234,94 @@
|
|
32
234
|
|
33
235
|
from sklearn.metrics import confusion_matrix
|
34
236
|
|
237
|
+
|
238
|
+
|
35
239
|
print(confusion_matrix(y_test, predict_classes))
|
36
240
|
|
241
|
+
|
242
|
+
|
243
|
+
10000/10000 [==============================] - 1s 60us/step
|
244
|
+
|
245
|
+
正確度(accuracy): 0.9253
|
246
|
+
|
247
|
+
|
248
|
+
|
249
|
+
|
250
|
+
|
251
|
+
---------------------------------------------------------------------------
|
252
|
+
|
253
|
+
ValueError Traceback (most recent call last)
|
254
|
+
|
255
|
+
<ipython-input-7-0c069648309b> in <module>
|
256
|
+
|
257
|
+
16 from sklearn.metrics import confusion_matrix
|
258
|
+
|
259
|
+
17
|
260
|
+
|
261
|
+
---> 18 print(confusion_matrix(y_test, predict_classes))
|
262
|
+
|
263
|
+
|
264
|
+
|
265
|
+
C:\python\anaconda\pgm\lib\site-packages\sklearn\metrics\classification.py in confusion_matrix(y_true, y_pred, labels, sample_weight)
|
266
|
+
|
267
|
+
251
|
268
|
+
|
269
|
+
252 """
|
270
|
+
|
271
|
+
--> 253 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
|
272
|
+
|
273
|
+
254 if y_type not in ("binary", "multiclass"):
|
274
|
+
|
275
|
+
255 raise ValueError("%s is not supported" % y_type)
|
276
|
+
|
277
|
+
|
278
|
+
|
279
|
+
C:\python\anaconda\pgm\lib\site-packages\sklearn\metrics\classification.py in _check_targets(y_true, y_pred)
|
280
|
+
|
281
|
+
79 if len(y_type) > 1:
|
282
|
+
|
283
|
+
80 raise ValueError("Classification metrics can't handle a mix of {0} "
|
284
|
+
|
285
|
+
---> 81 "and {1} targets".format(type_true, type_pred))
|
286
|
+
|
287
|
+
82
|
288
|
+
|
289
|
+
83 # We can't have more than one value on y_type => The set is no more needed
|
290
|
+
|
291
|
+
|
292
|
+
|
293
|
+
ValueError: Classification metrics can't handle a mix of multilabel-indicator and multiclass targets
|
294
|
+
|
295
|
+
|
296
|
+
|
37
297
|
```
|
38
298
|
|
39
299
|
|
40
300
|
|
301
|
+
以下、printの結果です。
|
302
|
+
|
41
303
|
```ここに言語を入力
|
42
304
|
|
43
|
-
10000/10000 [==============================] - 1s 89us/step
|
44
|
-
|
45
|
-
|
305
|
+
print(y_test)
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
306
|
+
|
50
|
-
|
51
|
-
ValueError Traceback (most recent call last)
|
52
|
-
|
53
|
-
<ipython-input-49-2f493ca036b8> in <module>
|
54
|
-
|
55
|
-
|
307
|
+
print(predict_classes)
|
56
|
-
|
57
|
-
|
308
|
+
|
58
|
-
|
59
|
-
|
309
|
+
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
310
|
+
|
64
|
-
|
65
|
-
251
|
66
|
-
|
67
|
-
|
311
|
+
[[0. 0. 0. ... 1. 0. 0.]
|
68
|
-
|
312
|
+
|
69
|
-
|
313
|
+
[0. 0. 1. ... 0. 0. 0.]
|
70
|
-
|
314
|
+
|
71
|
-
|
315
|
+
[0. 1. 0. ... 0. 0. 0.]
|
316
|
+
|
72
|
-
|
317
|
+
...
|
318
|
+
|
73
|
-
|
319
|
+
[0. 0. 0. ... 0. 0. 0.]
|
74
|
-
|
75
|
-
|
76
|
-
|
320
|
+
|
77
|
-
|
321
|
+
[0. 0. 0. ... 0. 0. 0.]
|
78
|
-
|
322
|
+
|
79
|
-
|
323
|
+
[0. 0. 0. ... 0. 0. 0.]]
|
80
|
-
|
81
|
-
|
324
|
+
|
82
|
-
|
83
|
-
---> 81 "and {1} targets".format(type_true, type_pred))
|
84
|
-
|
85
|
-
82
|
86
|
-
|
87
|
-
|
325
|
+
[7 2 1 ... 4 5 6]
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
ValueError: Classification metrics can't handle a mix of multilabel-indicator and multiclass targets
|
92
326
|
|
93
327
|
```
|