質問編集履歴
1
コンフィデンスが格納されている部分からの抜き出し方に教えていただきたく、predictionの出力を追記しました。
test
CHANGED
File without changes
|
test
CHANGED
@@ -1,273 +1,169 @@
|
|
1
|
-
YOLOv3に
|
1
|
+
YOLOv3ホームページに公開されているdetect.pyというファイルにおいて検出された物体のコンフィデンスの値を取得したいと考えています。
|
2
|
+
|
2
|
-
|
3
|
+
ソースコード中のpredictionにそれらの情報が格納されていると考え抽出しようと考えているのですが、中身の値の認識に困っています。検出された物体のコンフィデンスを正確に出力するためにはどのようにしたら良いか教えていただけると幸いです。
|
4
|
+
|
3
|
-
|
5
|
+
ソースコードはdetect.pyの一部抜粋となります。
|
4
6
|
|
5
7
|
|
6
8
|
|
7
9
|
```python
|
8
10
|
|
9
|
-
f
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
i
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
i
|
20
|
-
|
21
|
-
imp
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
i
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
i
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
de
|
48
|
-
|
49
|
-
su
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
i
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
11
|
+
def arg_parse():
|
12
|
+
|
13
|
+
|
14
|
+
|
15
|
+
parser = argparse.ArgumentParser(description='YOLO v3 Detection Module')
|
16
|
+
|
17
|
+
|
18
|
+
|
19
|
+
parser.add_argument("--images", dest = 'images', help =
|
20
|
+
|
21
|
+
"Image / Directory containing images to perform detection upon",
|
22
|
+
|
23
|
+
default = "imgs", type = str)
|
24
|
+
|
25
|
+
parser.add_argument("--det", dest = 'det', help =
|
26
|
+
|
27
|
+
"Image / Directory to store detections to",
|
28
|
+
|
29
|
+
default = "det", type = str)
|
30
|
+
|
31
|
+
parser.add_argument("--bs", dest = "bs", help = "Batch size", default = 1)
|
32
|
+
|
33
|
+
parser.add_argument("--confidence", dest = "confidence", help = "Object Confidence to filter predictions", default = 0.5)
|
34
|
+
|
35
|
+
parser.add_argument("--nms_thresh", dest = "nms_thresh", help = "NMS Threshhold", default = 0.4)
|
36
|
+
|
37
|
+
parser.add_argument("--cfg", dest = 'cfgfile', help =
|
38
|
+
|
39
|
+
"Config file",
|
40
|
+
|
41
|
+
default = "cfg/yolov3.cfg", type = str)
|
42
|
+
|
43
|
+
parser.add_argument("--weights", dest = 'weightsfile', help =
|
44
|
+
|
45
|
+
"weightsfile",
|
46
|
+
|
47
|
+
default = "yolov3.weights", type = str)
|
48
|
+
|
49
|
+
parser.add_argument("--reso", dest = 'reso', help =
|
50
|
+
|
51
|
+
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
|
52
|
+
|
53
|
+
default = "416", type = str)
|
54
|
+
|
55
|
+
parser.add_argument("--scales", dest = "scales", help = "Scales to use for detection",
|
56
|
+
|
57
|
+
default = "1,2,3", type = str)
|
58
|
+
|
59
|
+
|
60
|
+
|
61
|
+
return parser.parse_args()
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
if __name__ == '__main__':
|
66
|
+
|
67
|
+
args = arg_parse()
|
68
|
+
|
69
|
+
scales = args.scales
|
70
|
+
|
71
|
+
images = args.images
|
72
|
+
|
73
|
+
batch_size = int(args.bs)
|
74
|
+
|
75
|
+
confidence = float(args.confidence)
|
76
|
+
|
77
|
+
nms_thesh = float(args.nms_thresh)
|
78
|
+
|
79
|
+
start = 0
|
80
|
+
|
81
|
+
|
82
|
+
|
83
|
+
CUDA = torch.cuda.is_available()
|
84
|
+
|
85
|
+
|
86
|
+
|
87
|
+
num_classes = 80
|
88
|
+
|
89
|
+
classes = load_classes('data/coco.names')
|
90
|
+
|
91
|
+
|
92
|
+
|
93
|
+
model = Darknet(args.cfgfile)
|
94
|
+
|
95
|
+
model.load_weights(args.weightsfile)
|
96
|
+
|
97
|
+
|
98
|
+
|
99
|
+
model.net_info["height"] = args.reso
|
100
|
+
|
101
|
+
inp_dim = int(model.net_info["height"])
|
102
|
+
|
103
|
+
assert inp_dim % 32 == 0
|
104
|
+
|
105
|
+
assert inp_dim > 32
|
106
|
+
|
107
|
+
|
108
|
+
|
109
|
+
#If there's a GPU availible, put the model on GPU
|
86
110
|
|
87
111
|
if CUDA:
|
88
112
|
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
p
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
default = "yolov3.weights", type = str)
|
142
|
-
|
143
|
-
parser.add_argument("--reso", dest = 'reso', help =
|
144
|
-
|
145
|
-
"Input resolution of the network. Increase to increase accuracy. Decrease to increase speed",
|
146
|
-
|
147
|
-
default = "416", type = str)
|
148
|
-
|
149
|
-
parser.add_argument("--scales", dest = "scales", help = "Scales to use for detection",
|
150
|
-
|
151
|
-
default = "1,2,3", type = str)
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
return parser.parse_args()
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
if __name__ == '__main__':
|
160
|
-
|
161
|
-
args = arg_parse()
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
scales = args.scales
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
images = args.images
|
170
|
-
|
171
|
-
batch_size = int(args.bs)
|
172
|
-
|
173
|
-
confidence = float(args.confidence)
|
174
|
-
|
175
|
-
nms_thesh = float(args.nms_thresh)
|
176
|
-
|
177
|
-
start = 0
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
CUDA = torch.cuda.is_available()
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
num_classes = 80
|
186
|
-
|
187
|
-
classes = load_classes('data/coco.names')
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
print("Loading network.....")
|
192
|
-
|
193
|
-
model = Darknet(args.cfgfile)
|
194
|
-
|
195
|
-
model.load_weights(args.weightsfile)
|
196
|
-
|
197
|
-
print("Network successfully loaded")
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
model.net_info["height"] = args.reso
|
202
|
-
|
203
|
-
inp_dim = int(model.net_info["height"])
|
204
|
-
|
205
|
-
assert inp_dim % 32 == 0
|
206
|
-
|
207
|
-
assert inp_dim > 32
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
#If there's a GPU availible, put the model on GPU
|
113
|
+
model.cuda()
|
114
|
+
|
115
|
+
|
116
|
+
|
117
|
+
model.eval()
|
118
|
+
|
119
|
+
|
120
|
+
|
121
|
+
read_dir = time.time()
|
122
|
+
|
123
|
+
#Detection phase
|
124
|
+
|
125
|
+
try:
|
126
|
+
|
127
|
+
imlist = [osp.join(osp.realpath('.'), images, img) for img in os.listdir(images) if os.path.splitext(img)[1] == '.png' or os.path.splitext(img)[1] =='.jpeg' or os.path.splitext(img)[1] =='.jpg']
|
128
|
+
|
129
|
+
except NotADirectoryError:
|
130
|
+
|
131
|
+
imlist = []
|
132
|
+
|
133
|
+
imlist.append(osp.join(osp.realpath('.'), images))
|
134
|
+
|
135
|
+
except FileNotFoundError:
|
136
|
+
|
137
|
+
print ("No file or directory with the name {}".format(images))
|
138
|
+
|
139
|
+
exit()
|
140
|
+
|
141
|
+
|
142
|
+
|
143
|
+
if not os.path.exists(args.det):
|
144
|
+
|
145
|
+
os.makedirs(args.det)
|
146
|
+
|
147
|
+
|
148
|
+
|
149
|
+
load_batch = time.time()
|
150
|
+
|
151
|
+
|
152
|
+
|
153
|
+
batches = list(map(prep_image, imlist, [inp_dim for x in range(len(imlist))]))
|
154
|
+
|
155
|
+
im_batches = [x[0] for x in batches]
|
156
|
+
|
157
|
+
orig_ims = [x[1] for x in batches]
|
158
|
+
|
159
|
+
im_dim_list = [x[2] for x in batches]
|
160
|
+
|
161
|
+
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
|
162
|
+
|
163
|
+
|
212
164
|
|
213
165
|
if CUDA:
|
214
166
|
|
215
|
-
model.cuda()
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
#Set the model in evaluation mode
|
220
|
-
|
221
|
-
model.eval()
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
read_dir = time.time()
|
226
|
-
|
227
|
-
#Detection phase
|
228
|
-
|
229
|
-
try:
|
230
|
-
|
231
|
-
imlist = [osp.join(osp.realpath('.'), images, img) for img in os.listdir(images) if os.path.splitext(img)[1] == '.png' or os.path.splitext(img)[1] =='.jpeg' or os.path.splitext(img)[1] =='.jpg']
|
232
|
-
|
233
|
-
except NotADirectoryError:
|
234
|
-
|
235
|
-
imlist = []
|
236
|
-
|
237
|
-
imlist.append(osp.join(osp.realpath('.'), images))
|
238
|
-
|
239
|
-
except FileNotFoundError:
|
240
|
-
|
241
|
-
print ("No file or directory with the name {}".format(images))
|
242
|
-
|
243
|
-
exit()
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
if not os.path.exists(args.det):
|
248
|
-
|
249
|
-
os.makedirs(args.det)
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
load_batch = time.time()
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
batches = list(map(prep_image, imlist, [inp_dim for x in range(len(imlist))]))
|
258
|
-
|
259
|
-
im_batches = [x[0] for x in batches]
|
260
|
-
|
261
|
-
orig_ims = [x[1] for x in batches]
|
262
|
-
|
263
|
-
im_dim_list = [x[2] for x in batches]
|
264
|
-
|
265
|
-
im_dim_list = torch.FloatTensor(im_dim_list).repeat(1,2)
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
if CUDA:
|
270
|
-
|
271
167
|
im_dim_list = im_dim_list.cuda()
|
272
168
|
|
273
169
|
|
@@ -312,6 +208,8 @@
|
|
312
208
|
|
313
209
|
for batch in im_batches:
|
314
210
|
|
211
|
+
#load the image
|
212
|
+
|
315
213
|
start = time.time()
|
316
214
|
|
317
215
|
if CUDA:
|
@@ -324,10 +222,18 @@
|
|
324
222
|
|
325
223
|
prediction = model(Variable(batch), CUDA)
|
326
224
|
|
225
|
+
# prediction here
|
226
|
+
|
227
|
+
print ("prediction", prediction)
|
228
|
+
|
327
229
|
|
328
230
|
|
329
231
|
prediction = write_results(prediction, confidence, num_classes, nms = True, nms_conf = nms_thesh)
|
330
232
|
|
233
|
+
# prediction here
|
234
|
+
|
235
|
+
print ("prediction2", prediction)
|
236
|
+
|
331
237
|
|
332
238
|
|
333
239
|
if type(prediction) == int:
|
@@ -340,7 +246,7 @@
|
|
340
246
|
|
341
247
|
end = time.time()
|
342
248
|
|
343
|
-
|
249
|
+
|
344
250
|
|
345
251
|
prediction[:,0] += i*batch_size
|
346
252
|
|
@@ -356,136 +262,50 @@
|
|
356
262
|
|
357
263
|
output = torch.cat((output,prediction))
|
358
264
|
|
359
|
-
|
360
|
-
|
361
|
-
for im_num, image in enumerate(imlist[i*batch_size: min((i + 1)*batch_size, len(imlist))]):
|
362
|
-
|
363
|
-
im_id = i*batch_size + im_num
|
364
|
-
|
365
|
-
objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id]
|
366
|
-
|
367
|
-
print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/batch_size))
|
368
|
-
|
369
|
-
print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs)))
|
370
|
-
|
371
|
-
print("----------------------------------------------------------")
|
372
|
-
|
373
|
-
i += 1
|
374
|
-
|
375
|
-
|
376
|
-
|
377
|
-
if CUDA:
|
378
|
-
|
379
|
-
torch.cuda.synchronize()
|
380
|
-
|
381
|
-
|
382
|
-
|
383
|
-
try:
|
384
|
-
|
385
|
-
output
|
386
|
-
|
387
|
-
except NameError:
|
388
|
-
|
389
|
-
print("No detections were made")
|
390
|
-
|
391
|
-
exit()
|
392
|
-
|
393
|
-
|
394
|
-
|
395
|
-
im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long())
|
396
|
-
|
397
|
-
scaling_factor = torch.min(inp_dim/im_dim_list,1)[0].view(-1,1)
|
398
|
-
|
399
|
-
output[:,[1,3]] -= (inp_dim - scaling_factor*im_dim_list[:,0].view(-1,1))/2
|
400
|
-
|
401
|
-
output[:,[2,4]] -= (inp_dim - scaling_factor*im_dim_list[:,1].view(-1,1))/2
|
402
|
-
|
403
|
-
output[:,1:5] /= scaling_factor
|
404
|
-
|
405
|
-
|
406
|
-
|
407
|
-
for i in range(output.shape[0]):
|
408
|
-
|
409
|
-
output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0])
|
410
|
-
|
411
|
-
output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1])
|
412
|
-
|
413
|
-
output_recast = time.time()
|
414
|
-
|
415
|
-
class_load = time.time()
|
416
|
-
|
417
|
-
colors = pkl.load(open("pallete", "rb"))
|
418
|
-
|
419
|
-
draw = time.time()
|
420
|
-
|
421
|
-
def write(x, batches, results):
|
422
|
-
|
423
|
-
c1 = tuple(x[1:3].int())
|
424
|
-
|
425
|
-
c2 = tuple(x[3:5].int())
|
426
|
-
|
427
|
-
img = results[int(x[0])]
|
428
|
-
|
429
|
-
cls = int(x[-1])
|
430
|
-
|
431
|
-
label = "{0}".format(classes[cls])
|
432
|
-
|
433
|
-
color = random.choice(colors)
|
434
|
-
|
435
|
-
cv2.rectangle(img, c1, c2,color, 1)
|
436
|
-
|
437
|
-
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
|
438
|
-
|
439
|
-
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
|
440
|
-
|
441
|
-
cv2.rectangle(img, c1, c2,color, -1)
|
442
|
-
|
443
|
-
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1)
|
444
|
-
|
445
|
-
return img
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
list(map(lambda x: write(x, im_batches, orig_ims), output))
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
det_names = pd.Series(imlist).apply(lambda x: "{}/det_{}".format(args.det,x.split("/")[-1]))
|
454
|
-
|
455
|
-
list(map(cv2.imwrite, det_names, orig_ims))
|
456
|
-
|
457
|
-
end = time.time()
|
458
|
-
|
459
|
-
|
460
|
-
|
461
|
-
print()
|
462
|
-
|
463
|
-
print("SUMMARY")
|
464
|
-
|
465
|
-
print("----------------------------------------------------------")
|
466
|
-
|
467
|
-
print("{:25s}: {}".format("Task", "Time Taken (in seconds)"))
|
468
|
-
|
469
|
-
print()
|
470
|
-
|
471
|
-
print("{:25s}: {:2.3f}".format("Reading addresses", load_batch - read_dir))
|
472
|
-
|
473
|
-
print("{:25s}: {:2.3f}".format("Loading batch", start_det_loop - load_batch))
|
474
|
-
|
475
|
-
print("{:25s}: {:2.3f}".format("Detection (" + str(len(imlist)) + " images)", output_recast - start_det_loop))
|
476
|
-
|
477
|
-
print("{:25s}: {:2.3f}".format("Output Processing", class_load - output_recast))
|
478
|
-
|
479
|
-
print("{:25s}: {:2.3f}".format("Drawing Boxes", end - draw))
|
480
|
-
|
481
|
-
print("{:25s}: {:2.3f}".format("Average time_per_img", (end - load_batch)/len(imlist)))
|
482
|
-
|
483
|
-
print("----------------------------------------------------------")
|
484
|
-
|
485
|
-
|
486
|
-
|
487
|
-
torch.cuda.empty_cache()
|
488
|
-
|
489
|
-
|
490
|
-
|
491
265
|
```
|
266
|
+
|
267
|
+
|
268
|
+
|
269
|
+
これらのpredictionの出力は以下のようになっています。
|
270
|
+
|
271
|
+
|
272
|
+
|
273
|
+
prediction tensor([[[1.5383e+01, 1.2399e+01, 9.3864e+01, ..., 7.5703e-04,
|
274
|
+
|
275
|
+
9.0208e-04, 5.9246e-04],
|
276
|
+
|
277
|
+
[1.8194e+01, 1.4778e+01, 1.0411e+02, ..., 2.1265e-04,
|
278
|
+
|
279
|
+
1.1475e-03, 1.6560e-03],
|
280
|
+
|
281
|
+
[2.1265e+01, 1.2748e+01, 3.8478e+02, ..., 3.6203e-03,
|
282
|
+
|
283
|
+
7.6282e-03, 6.8394e-03],
|
284
|
+
|
285
|
+
...,
|
286
|
+
|
287
|
+
[4.1259e+02, 4.1129e+02, 3.3664e+00, ..., 2.8758e-05,
|
288
|
+
|
289
|
+
3.9763e-05, 2.3203e-05],
|
290
|
+
|
291
|
+
[4.1155e+02, 4.0989e+02, 7.5316e+00, ..., 1.7735e-04,
|
292
|
+
|
293
|
+
2.2018e-04, 2.0052e-04],
|
294
|
+
|
295
|
+
[4.1110e+02, 4.1259e+02, 5.2966e+01, ..., 9.5141e-05,
|
296
|
+
|
297
|
+
1.5668e-04, 2.1929e-04]]])
|
298
|
+
|
299
|
+
|
300
|
+
|
301
|
+
prediction2 tensor([[ 0.0000, 89.3013, 110.7477, 303.7198, 294.3178, 0.9951, 0.9997,
|
302
|
+
|
303
|
+
1.0000],
|
304
|
+
|
305
|
+
[ 0.0000, 256.5005, 98.3645, 373.2559, 144.1284, 0.9953, 0.9431,
|
306
|
+
|
307
|
+
7.0000],
|
308
|
+
|
309
|
+
[ 0.0000, 69.5096, 173.2218, 170.4211, 343.0221, 0.9997, 0.9882,
|
310
|
+
|
311
|
+
16.0000]])
|