質問するログイン新規登録

質問編集履歴

1

修正

2019/11/20 09:31

投稿

Nyankoy
Nyankoy

スコア15

title CHANGED
File without changes
body CHANGED
@@ -1,142 +1,3 @@
1
- PSPNetを使用して長方形の画像について画像認識を行いたいと考えています。
1
+ 長方形の画像について画像認識を行いたいと考えています。
2
2
  様々なアスペクト比の画像が混在しているため、初めは256×256の画像にリサイズした後に、学習することを行っていました。しかし、精度があまりよくなかったため、元の画像サイズに近い、200×400に画像サイズを統一した後学習を行おうと考えています。しかし、エラーが出てしまいその原因を究明することができません。
3
- ネットワーク構造は基本256×256の画像の学習で使用していたものと同じです。
4
- 以下のプログラムを参考にしています。
5
- https://github.com/rkuga/PSPNet/blob/master/nets/pspnet.py
6
- ```pspnet.py
7
- import numpy as np
8
- import cv2
9
- import chainer
10
- import chainer.functions as F
11
- import chainer.links as L
12
-
13
- class PSPNet(chainer.Chain):
14
- # in_channel=1, out_channel=2, input_height=400, input_width =200
15
- def __init__(self, in_channel, out_channel, input_height, input_width):
16
- self.input_height = input_height
17
- self.input_width = input_width
18
- super(PSPNet, self).__init__(
19
- conv1_1=L.Convolution2D(in_channel, 64, 3, stride=2, pad=1, nobias=True),
20
- bn1_1=L.BatchNormalization(64),
21
- conv1_2=L.Convolution2D(64, 64, 3, stride=1, pad=1, nobias=True),
22
- bn1_2=L.BatchNormalization(64),
23
- conv1_3=L.Convolution2D(64, 128, 3, stride=1, pad=1, nobias=True),
24
- bn1_3=L.BatchNormalization(128),
25
-
26
- conv2_1_proj = L.Convolution2D(128, 256, 1, stride=1, pad=0, nobias=True),
27
- bn2_1_proj=L.BatchNormalization(256),
28
- conv2_1_res = BottleNeck_proj(128, 64, 256),
29
- conv2_res = Block(2, 256, 64, 256),
30
-
31
- conv3_1_proj = L.Convolution2D(256, 512, 1, stride=1, pad=0, nobias=True),
32
- bn3_1_proj=L.BatchNormalization(512),
33
- conv3_1_res = BottleNeck_proj(256, 128, 512),
34
- conv3_res = Block(3, 512, 128, 512),
35
-
36
- conv4_1_proj = L.Convolution2D(512, 1024, 1, stride=1, pad=0, nobias=True),
37
- bn4_1_proj=L.BatchNormalization(1024),
38
- conv4_1_res = BottleNeck_proj(512, 256, 1024),
39
- conv4_res = Block(7, 1024, 256, 1024, Dilate=2),
40
- conv4_res2 = Block(15, 1024, 256, 1024, Dilate=2),
41
-
42
- conv5_1_proj = L.Convolution2D(1024, 2048, 1, stride=1, pad=0, nobias=True),
43
- bn5_1_proj=L.BatchNormalization(2048),
44
- conv5_1_res = BottleNeck_proj(1024, 512, 2048),
45
- conv5_res = Block(2, 2048, 512, 2048, Dilate=4),
46
-
47
- conv5_3_pool1_conv = L.Convolution2D(2048, 512, 1, stride=1, pad=0, nobias=True),
48
- bn5_3_pool1_conv=L.BatchNormalization(512),
49
- conv5_3_pool2_conv = L.Convolution2D(2048, 512, 1, stride=1, pad=0, nobias=True),
50
- bn5_3_pool2_conv=L.BatchNormalization(512),
51
- conv5_3_pool3_conv = L.Convolution2D(2048, 512, 1, stride=1, pad=0, nobias=True),
52
- bn5_3_pool3_conv=L.BatchNormalization(512),
53
- conv5_3_pool6_conv = L.Convolution2D(2048, 512, 1, stride=1, pad=0, nobias=True),
54
- bn5_3_pool6_conv=L.BatchNormalization(512),
55
-
56
- conv5_4 = L.Convolution2D(4096, 512, 3, stride=1, pad=1, nobias=True),
57
- bn5_4=L.BatchNormalization(512),
58
-
59
- conv6 = L.Convolution2D(512, out_channel, 1, stride=1, pad=0, nobias=True),
60
-
61
-
62
- )
63
-
64
-
65
- def __call__(self, x):
66
- conv1_1 = F.relu(self.bn1_1(self.conv1_1(x)))
67
- conv1_2 = F.relu(self.bn1_2(self.conv1_2(conv1_1)))
68
- conv1_3 = F.relu(self.bn1_3(self.conv1_3(conv1_2)))
69
- pool1 = F.max_pooling_2d(conv1_3,3,stride=2)
70
-
71
- conv2_1_proj = self.bn2_1_proj(self.conv2_1_proj(pool1))
72
- conv2_1 = self.conv2_1_res(pool1, conv2_1_proj)
73
- conv2_3 = self.conv2_res(conv2_1)
74
-
75
- conv3_1_proj = self.bn3_1_proj(self.conv3_1_proj(conv2_3))
76
- conv3_1 = self.conv3_1_res(conv2_3, conv3_1_proj)
77
- conv3_4 = self.conv3_res(conv3_1)
78
-
79
- conv4_1_proj = self.bn4_1_proj(self.conv4_1_proj(conv3_4))
80
- conv4_1 = self.conv4_1_res(conv3_4, conv4_1_proj)
81
- conv4_23_1 = self.conv4_res(conv4_1)
82
- conv4_23 = self.conv4_res2(conv4_23_1)
83
-
84
- conv5_1_proj = self.bn5_1_proj(self.conv5_1_proj(conv4_23))
85
- conv5_1 = self.conv5_1_res(conv4_23, conv5_1_proj)
86
- conv5_3 = self.conv5_res(conv5_1)
87
-
88
- _,c,h,w = conv5_3.data.shape
89
- conv5_3_pool1 = F.average_pooling_2d(conv5_3, h, stride=h)
90
- print(conv5_3_pool1.data.shape)
91
- conv5_3_pool1_conv = self.bn5_3_pool1_conv(self.conv5_3_pool1_conv(conv5_3_pool1))
92
- conv5_3_pool1_interp = F.resize_images(conv5_3_pool1_conv, (h,w))
93
-
94
- conv5_3_pool2 = F.average_pooling_2d(conv5_3, int(h/2), stride=int(h/2))
95
- conv5_3_pool2_conv = self.bn5_3_pool2_conv(self.conv5_3_pool2_conv(conv5_3_pool2))
96
- conv5_3_pool2_interp = F.resize_images(conv5_3_pool2_conv, (h,w))
97
-
98
- conv5_3_pool3 = F.average_pooling_2d(conv5_3, int(h/3), stride=int(h/3))
99
- conv5_3_pool3_conv = self.bn5_3_pool3_conv(self.conv5_3_pool3_conv(conv5_3_pool3))
100
- conv5_3_pool3_interp = F.resize_images(conv5_3_pool3_conv, (h,w))
101
-
102
- conv5_3_pool6 = F.average_pooling_2d(conv5_3, int(h/6), stride=int(h/6))
103
- conv5_3_pool6_conv = self.bn5_3_pool6_conv(self.conv5_3_pool6_conv(conv5_3_pool6))
104
- conv5_3_pool6_interp = F.resize_images(conv5_3_pool6_conv, (h,w))
105
-
106
- conv5_3_concat = F.concat((conv5_3, conv5_3_pool6_interp))
107
- conv5_3_concat = F.concat((conv5_3_concat, conv5_3_pool3_interp))
108
- conv5_3_concat = F.concat((conv5_3_concat, conv5_3_pool2_interp))
109
- conv5_3_concat = F.concat((conv5_3_concat, conv5_3_pool1_interp))
110
-
111
- conv5_4 = F.relu(self.bn5_4(self.conv5_4(conv5_3_concat)))
112
- conv5_4 = F.dropout(conv5_4, ratio=.1)
113
-
114
- conv6 = self.conv6(conv5_4)
115
-
116
- conv6_interp = F.resize_images(conv6, (self.input_height,self.input_width))
117
-
118
- return conv6_interp
119
- ```
120
- 以下エラー内容です。
121
- `assert y_w > 0, 'Width in the output should be positive.'`から、average_pooling_2dにおいて幅が負の値になっているということのようですが、その理由が分かりません。どこを改善すればよいのでしょうか?わかる方がいましたら教えていただけると幸いです。よろしくお願いいたします。
122
-
123
- ```
124
- C:\Users\hoge\Anaconda3\lib\site-packages\chainer\functions\normalization\batch_normalization.py:67: UserWarning: A batch with no more than one sample has been given to F.batch_normalization. F.batch_normalization will always output a zero tensor for such batches. This could be caused by incorrect configuration in your code (such as running evaluation while chainer.config.train=True), but could also happen in the last batch of training if non-repeating iterator is used.
125
- UserWarning)
126
- Traceback (most recent call last):
127
- File "PSPtrain.py", line 63, in main
128
- z = net(x)
129
- File "C:\Users\hoge\pspnet.py", line 166, in __call__
130
- conv5_3_pool2 = F.average_pooling_2d(conv5_3, int(h/2), stride=int(h/2))
131
- File "C:\Users\hoge\Anaconda3\lib\site-packages\chainer\functions\pooling\average_pooling_2d.py", line 214, in average_pooling_2d
132
- return AveragePooling2D(ksize, stride, pad, False).apply((x,))[0]
133
- File "C:\Users\hoge\Anaconda3\lib\site-packages\chainer\function_node.py", line 258, in apply
134
- outputs = self.forward(in_data)
135
- File "C:\Users\hoge\Anaconda3\lib\site-packages\chainer\function_node.py", line 367, in forward
136
- return self.forward_gpu(inputs)
137
- File "C:\Users\hoge\Anaconda3\lib\site-packages\chainer\functions\pooling\average_pooling_2d.py", line 56, in forward_gpu
138
- return super(AveragePooling2D, self).forward_gpu(x)
139
- File "C:\Users\hoge\Anaconda3\lib\site-packages\chainer\functions\pooling\pooling_2d.py", line 55, in forward_gpu
140
- assert y_w > 0, 'Width in the output should be positive.'
141
- AssertionError: Width in the output should be positive.
142
- ```
3
+ ネットワーク構造は基本256×256の画像の学習で使用していたものと同じです。